Journal of Appliance Science & Technology ›› 2022, Vol. 0 ›› Issue (5): 62-70.doi: 10.19784/j.cnki.issn1672-0172.2022.05.010
• Articles • Previous Articles Next Articles
ZHAO Rijing1, MA Zhiheng1, WANG Shouzhen1, HUANG Dong1, ZHAO Yongfeng2
Online:
2022-10-01
Published:
2022-11-01
CLC Number:
ZHAO Rijing, MA Zhiheng, WANG Shouzhen, HUANG Dong, ZHAO Yongfeng. Review on frosting of parallel-flow microchannel heat exchangers[J]. Journal of Appliance Science & Technology, 2022, 0(5): 62-70.
[1] | 苏亮. 优化家电产业链供应链:“空调行业铝应用研讨会”在青岛召开[J]. 家用电器, 2022(01): 41-43. |
[2] | 苏亮. 推动铝应用进程,培养相关产业链:第三次空调行业铝应用研讨会召开[J]. 家用电器, 2022(03): 70-71. |
[3] | 张丽. 提升产业链安全,助力双碳目标实现:第四次空调行业铝应用研讨会召开[J]. 家用电器, 2022(08): 64-65. |
[4] | 薛明军. 微通道换热器专利分析[J]. 制冷与空调, 2022, 22(05): 1-4. |
[5] | 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(zk1): 10-15. |
[6] | 杜玉清. 微通道换热器用作热泵型空调器室外换热器相关技术分析[J]. 制冷与空调, 2022, 22(07): 44-49. |
[7] | 丁汉新, 王利, 任能. 微通道换热器及其在制冷空调领域的应用前景[J]. 制冷与空调, 2011, 11(04): 111-115. |
[8] | Xiong T, Liu G, Huang S, et al.Two-phase flow distribution in parallel flow mini/micro-channel heat exchangers for refrigeration and heat pump systems: A comprehensive review[J]. Applied Thermal Engineering, 2022, 201: 117820. |
[9] | 熊通, 晏刚, 樊超超, 等. 微通道换热器两相流分布研究现状与展望[J]. 制冷学报, 2021, 42(01): 23-35. |
[10] | 杜琳, 管祥添, 高如启, 等. 微通道平行流换热器制冷剂分配特性研究综述[J]. 制冷技术, 2021, 41(04): 75-81. |
[11] | Dario E R, Tadrist L, Passos J C.Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends[J]. Applied Thermal Engineering. 2013, 59(1-2): 316-335. |
[12] | 朱传辉, 李保国, 杨会芳. 微通道换热器研究及应用进展[J]. 热能动力工程, 2020, 35(09): 1-9. |
[13] | Qasem N A A, Zubair S M. Compact and microchannel heat exchangers: A comprehensive review of air-side friction factor and heat transfer correlations[J]. Energy Conversion and Management, 2018, 173: 555-601. |
[14] | Khan M G, Fartaj A.A review on microchannel heat exchangers and potential applications[J]. International Journal of Energy Research, 2011, 35(07): 553-582. |
[15] | 熊通, 晏刚, 樊超超, 等. 微通道换热器结霜特性研究现状与展望[J]. 制冷学报, 2020, 41(06): 22-30. |
[16] | 李晓娟, 钱锦远, 陈珉芮, 等. 微通道换热器结霜现象的研究进展[J]. 现代化工, 2017, 37(11): 47-50. |
[17] | Hu W, Fan J, Song M, et al.An experimental study on the frosting characteristic and performance of a micro-channel evaporator in an air source heat pump unit[J]. Energy and Buildings, 2020, 224: 110254. |
[18] | Xu B, Han Q, Chen J, et al.Experimental investigation of frost and defrost performance of microchannel heat exchangers for heat pump systems[J]. Applied Energy, 2013, 103: 180-188. |
[19] | Pu L, Liu R, Huang H, et al.Experimental study of cyclic frosting and defrosting on microchannel heat exchangers with different coatings[J]. Energy and Buildings, 2020, 226: 110382. |
[20] | 杉尾孝,横山昭一,山口成人. 热泵用室外换热器: 中国, CN200310120949.7[P].2004-06-16. |
[21] | 横山昭一, 山口成人, 杉尾孝. 换热器: 中国, CN200310124652.8[P].2004-06-16. |
[22] | 杉尾孝, 横山昭一, 山口成人. 热泵用室外换热器: 中国, CN200410005086.3[P].2004-08-25. |
[23] | 王利, 丁汉新, 席卷. 用于空调热泵的微通道换热器: 中国, CN200910157622.4[P].2012-09-05. |
[24] | 徐磊, 吴玮, 陈文单. 平行流换热器: 中国, CN201510522314.2[P].2017-03-08. |
[25] | 张杰山. 微通道换热器以及应用该微通道换热器的设备: 中国, CN201010528364.9[P].2013-01-02. |
[26] | 松元昂, 小森晃. 室外换热器及车辆用空调装置: 中国, CN201280034280.7[P].2016-02-03. |
[27] | Xu B, Zhang C, Wang Y, et al.Experimental investigation of the performance of microchannel heat exchangers with a new type of fin under wet and frosting conditions[J]. Applied Thermal Engineering. 2015, 89: 444-458. |
[28] | 李雪丽, 盛伟, 兰庆云, 等. 结霜工况下不同结构微通道蒸发器换热性能实验研究[J]. 制冷, 2020, 39(01): 1-9. |
[29] | 陈文勇. 用TRIZ理论解决微通道换热器除霜排水问题[J]. 制冷与空调, 2014, 14(10): 5-10. |
[30] | Kim M, Kim H, Kim D R, et al.A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions[J]. Energy Conversion and Management, 2016, 110: 494-500. |
[31] | Park J, Kim D R, Lee K.Frosting behaviors and thermal performance of louvered fins with unequal louver pitch[J]. International Journal of Heat and Mass Transfer, 2016, 95: 499-505. |
[32] | 金世显, 朴振成, 李宽洙. 热交换器及具备其的热泵: CN201580050164.8[P].2019-06-28. |
[33] | 刘华钊, 黄宁杰. 用于换热器的翅片以及采用该翅片的换热器: CN200910119662.X[P].2012-02-22. |
[34] | Park J, Kim D R, Lee K.Local frost behaviors of a scaled-up louvered fin heat exchanger[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1127-1134. |
[35] | 胡文举, 葛宇, 贾鹏, 等. 微通道蒸发器前气液分离对空气源热泵性能影响的实验研究[J]. 可再生能源, 2020, 38(10): 1326-1332. |
[36] | 葛宇. 微通道换热器空气源热泵结除霜改善技术研究[D]. 北京: 北京建筑大学, 2020. |
[37] | 周光辉, 禹佩利, 李海军, 等. 带经济器的热泵型纯电动客车空调系统结霜特性研究[J]. 低温与超导, 2019, 47(08): 75-79. |
[38] | 贾鹏. 微通道换热器空气源热泵系统性能与结除霜特性研究[D]. 北京: 北京建筑大学, 2019. |
[39] | Kim M, Lee K.Determination method of defrosting start-time based on temperature measurements[J]. Applied Energy, 2015, 146: 263-269. |
[40] | Chen J, Wu J, He J, et al.A novel defrosting initiating strategy for automotive air conditioner heat pumps based on frost thickness growth prediction[J]. International Journal of Refrigeration, 2022, 134: 242-252. |
[41] | 丁国良, 庄大伟, 李智强, 等. 制冷空调换热器的研究进展(二)——紧凑式换热器[J]. 家电科技, 2019(05): 38-46. |
[42] | Li F, Wu S, Ma Z, et al.Effect of surface coating on defrosting water drainage characteristics of vertical-fin microchannel frosting evaporator[J]. Applied Thermal Engineering, 2022, 208: 118220. |
[43] | Zhang P, Hrnjak P S.Air-side performance of a parallel-flow parallel-fin (PF2) heat exchanger in sequential frosting[J]. International Journal of Refrigeration, 2010, 33(06): 1118-1128. |
[44] | Zhang P, Hrnjak P S.Effect of some geometric parameters on performance of PF2 heat exchangers in periodic frosting[J]. International Journal of Refrigeration, 2010, 33(02): 334-346. |
[45] | Zhang P, Hrnjak P S.Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions[J]. International Journal of Refrigeration, 2009, 32(05): 911-921. |
[46] | 位兴华, 赵日晶, 黄东. 新型微通道换热器流路设计及翅片开窗实验研究[J]. 制冷, 2022, 41(01): 24-29. |
[47] | 位兴华, 赵日晶, 黄东. 新型插片式微通道换热器性能特性试验研究[J]. 制冷与空调, 2022, 22(05): 73-78. |
[48] | Hong S H, Jang D S, Yun S, et al.Performance improvement of heat pumps using novel microchannel heat exchangers with plain-louver fins during periodic frosting and defrosting cycles in electric vehicles[J]. Energy Conversion and Management, 2020, 223: 113306. |
[49] | 王伟, 李潇, 韩雷, 等. 热泵型汽车空调结霜及除霜特性研究[J]. 制冷与空调, 2018, 18(09): 11-14. |
[50] | 魏文建, 常守金, 丁二刚, 等. 不同结构风冷换热器风侧特性对比分析[J]. 制冷技术, 2020, 40(05): 53-57. |
[51] | 党聪聪. 插片式微通道换热器换热特性实验研究与三维参数化设计平台开发[D]. 杭州: 浙江理工大学, 2019. |
[52] | 徐龙贵. 微通道换热器用于热泵空调室外机的研究[D]. 广州: 华南理工大学, 2019. |
[53] | Garcia J C S, Tanaka H, Giannetti N, et al. Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm[J]. Applied Thermal Engineering, 2022, 202: 117821. |
[54] | 刘璐, 丁国良, 庄大伟, 等. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(zk1): 91-97. |
[55] | 马志恒, 李丰, 赵日晶, 等. 竖插翅片微通道换热器排水性能研究[J]. 制冷与空调, 2022, 22(05): 79-84. |
[56] | Wu X, Ma Q, Chu F.Numerical Simulation of Frosting on Fin-and-Tube Heat Exchanger Surfaces[J]. Journal of Thermal Science and Engineering Applications, 2017, 9(03): 12052. |
[57] | Cui J, Li W Z, Liu Y, et al.A new model for predicting performance of fin-and-tube heat exchanger under frost condition[J]. International Journal of Heat and Fluid Flow, 2011, 32(01): 249-260. |
[58] | 张克鹏. 微通道换热器翅片结构优化[J]. 制冷与空调, 2021, 21(01): 32-35. |
[59] | Tran N, Wang C.Optimization of the airside thermal performance of mini-channel-flat-tube radiators by using composite straight-and-louvered fins[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120163. |
[60] | Glazar V, Trp A, Lenic K.Optimization of air-water microchannel heat exchanger using response surface methodology[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119887. |
[61] | Khovalyg D, Hrnjak P S, Jacobi A M.Heat flux variation between neighboring channels in compact minichannel heat exchangers[J]. Applied Thermal Engineering, 2018, 135: 418-434. |
[62] | Saleem A, Kim M.Air-side thermal hydraulic performance of microchannel heat exchangers with different fin configurations[J]. Applied Thermal Engineering, 2017, 125: 780-789. |
[63] | 丁雨. 几何参数对微通道百叶窗翅片干工况流动传热及结霜特性影响的数值研究[D]. 西安: 西安交通大学, 2022. |
[64] | 陈坚. 微通道换热器霜层生长特性数值模拟研究[D]. 西安: 西安交通大学, 2020. |
[65] | 杜心远. 空调换热器翅片结霜与化霜排水特性的研究[D]. 上海: 上海交通大学, 2020. |
[66] | Morales-Fuentes A, Chapa-Contreras O M, Méndez-Díaz S, et al. Analysis of the heat transfer area distribution in a frosted plain fin-and-tube geometry[J]. International Journal of Refrigeration, 2017, 75: 26-37. |
[67] | Chung Y, Yoo J W, Kim G T, et al.Prediction of the frost growth and performance change of air source heat pump system under various frosting conditions[J]. Applied Thermal Engineering, 2019, 147: 410-420. |
[68] | Zhang L, Song M, Mao N, et al.Temporal and spatial frost growth prediction of a tube-finned heat exchanger considering frost distribution characteristics[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122192. |
[69] | Wu S, Zhao R, Huang D, et al.Effect of non-uniform temperature & humidity distribution in the frontal airflow on evaporator frosting performance of a frost-free refrigerator[J]. International Journal of Refrigeration, 2021, 123: 150-158. |
[70] | Xia Y, Jacobi A M.A model for predicting the thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers under frosting conditions[J]. International Journal of Refrigeration, 2010, 33(2): 321-333. |
[71] | Xia Y, Zhong Y, Hrnjak P S, et al.Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers[J]. International Journal of Refrigeration, 2006, 29(07): 1066-1079. |
[72] | Breque F, Nemer M.Modeling of a fan-supplied flat-tube heat exchanger exposed to non-uniform frost growth[J]. International Journal of Refrigeration, 2017, 75: 129-140. |
[73] | Moallem E, Cremaschi L, Fisher D E, et al.Effects of frost growth on louvered folded fins of microchannel heat exchangers on the time-dependent air side convective heat transfer coefficient[J]. Experimental Thermal and Fluid Science, 2017, 88: 326-335. |
[74] | Moallem E, Hong T, Cremaschi L, et al.Developing empirical correlations for frost thickness and air face velocity degradation for microchannel heat exchangers used in heat pump applications under frosting conditions[J]. HVAC&R research, 2013, 19(07): 779-787. |
[75] | Boeng J, Marcon A A, Hermes C J L. Air-side heat transfer and pressure drop characteristics of microchannel evaporators for household refrigerators[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118913. |
[76] | Boeng J, Rametta R S, Melo C, et al.Thermal-hydraulic characterization and system-level optimization of microchannel condensers for household refrigeration applications[J]. Thermal Science and Engineering Progress, 2020, 20: 100479. |
[77] | Sheng W, Li X, Wang R, et al.Condensate drainage on slit or louvered fins in microchannel heat exchangers for anti-frosting[J]. Energy and Buildings, 2020, 223: 110215. |
[78] | Shao L, Yang L, Zhang C.Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions[J]. Applied Energy, 2010, 87(04): 1187-1197. |
[79] | Brignoli R, Cecchinato L, Zilio C.Experimental analysis of an air-water heat pump with micro-channel heat exchanger[J]. Applied Thermal Engineering, 2013, 50(01): 1119-1130. |
[80] | Xiong T, Ying Y, Han B, et al.Comparison of energy supplies and consumptions in heat pump systems using finned tube and microchannel heat exchangers during defrosting[J]. International Journal of Refrigeration, 2021, 132: 222-232. |
[81] | 密洁霞. 微通道蒸发器和翅片管式蒸发器性能对比试验[J]. 制冷与空调, 2021, 21(12): 48-52. |
[82] | Sankar P, Lorenzo C, Daniel F.Comparison of frost and defrost performance between microchannel coil and fin-and-tube coil for heat pump systems[J]. International Journal of Air-Conditioning and Refrigeration, 2011, 19(04). |
[83] | Wang Y, Zong S, Song Y, et al.Experimental and techno-economic analysis of transcritical CO2 heat pump water heater with fin-and-tube and microchannel heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117606. |
[84] | 盛伟, 方永强, 兰庆云, 等. 微通道换热器结霜特性及换热性能实验研究[J]. 制冷学报, 2021, 42(01): 89-98. |
[85] | Li K, Luo S, Yu J, et al.An experimental investigation on frosting characteristics of a microchannel outdoor heat exchanger in an air conditioning heat pump system for electric vehicles[J]. International Journal of Energy Research, 2020, 44(09): 7807-7819. |
[86] | Moallem E, Hong T, Cremaschi L, et al.Experimental investigation of adverse effect of frost formation on microchannel evaporators, part 1: Effect of fin geometry and environmental effects[J]. International journal of refrigeration, 2013, 36(06): 1762-1775. |
[87] | 盛伟, 刘鹏鹏, 丁国良. 微通道换热器结霜性能的试验研究[J]. 流体机械, 2017, 45(01): 60-65. |
[88] | 包佳倩, 苏林, 刘明康, 等. 电动汽车热泵空调系统室外换热器结霜特性实验研究[J]. 制冷学报, 2020, 41(03): 58-64. |
[89] | 盛伟, 兰庆云, 裴阳, 等. 结霜工况下微通道蒸发器制冷剂分布特性[J]. 制冷学报, 2019, 40(02): 43-49. |
[90] | Wu J, Ouyang G, Hou P, et al.Experimental investigation of frost formation on a parallel flow evaporator[J]. Applied Energy, 2011, 88(05): 1549-1556. |
[91] | 梁媛媛, 徐博, 陈江平. 结霜工况下平行流换热器的换热性能[J]. 上海交通大学学报, 2013, 47(04): 674-678. |
[92] | Hong T, Cremaschi L, Moallem E, et al.Measurements of Frost Growth on Louvered Folded Fins of Microchannel Heat Exchangers, Part 1: Experimental Methodology[J]. ASHRAE Transactions, 2012, 118. |
[93] | Moallem E, Padhmanabhan S, Cremaschi L, et al.Experimental investigation of the surface temperature and water retention effects on the frosting performance of a compact microchannel heat exchanger for heat pump systems[J]. International Journal of Refrigeration, 2012, 35(01): 171-186. |
[94] | 李海军, 周光辉, 李安桂, 等. 热泵型纯电动汽车空调结霜特性研究[J]. 低温与超导, 2014, 42(09): 60-63. |
[95] | 朱建民, 王丹东, 陈江平. 环境参数对平行流蒸发器结霜动态性能的影响[J]. 制冷技术, 2017, 37(02): 44-50. |
[96] | 张东京. 纯电动客车超低温热泵型空调系统结融霜特性研究[D]. 郑州: 中原工学院, 2019. |
[97] | 葛昕, 罗淑贤, 韩南奎, 等. 电动汽车热泵系统微通道换热器结霜特性研究[J]. 低温与超导, 2020, 48(12): 56-62. |
[98] | 赵晓丹, 余壮. 电动冷藏车制冷系统微通道蒸发器结霜特性研究[J]. 低温与超导, 2022, 50(06): 60-65. |
[99] | Kim K, Kim M, Kim D R, et al.Thermal performance of microchannel heat exchangers according to the design parameters under the frosting conditions[J]. International Journal of Heat and Mass Transfer, 2014, 71: 626-632. |
[100] | Hrnjak P, Zhang P, Rennels C.Effect of louver angle on performance of heat exchanger with serpentine fins and flat tubes in frosting: Importance of experiments in periodic frosting[J]. International Journal of Refrigeration, 2017, 84: 321-335. |
[101] | Moallem E, Cremaschi L, Fisher D E, et al.Experimental measurements of the surface coating and water retention effects on frosting performance of microchannel heat exchangers for heat pump systems[J]. Experimental Thermal and Fluid Science, 2012, 39: 176-188. |
[102] | Moallem E, Hong T, Cremaschi L, et al.Effects of surface coating and water retention on frost formation in microchannel evaporators (ASHRAE RP-1589)[J]. HVAC&R research, 2013, 19(04): 347-362. |
[103] | Mahvi A J, Boyina K, Musser A, et al.Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121162. |
[104] | Ye Z, Shi J, Chen J.Frosting behavior of louvered-fin and tube heat exchanger after surface treatment: Experimental analysis[J]. Applied Thermal Engineering, 2021, 194: 117066. |
[105] | Liang C P, Ture F, Dai Y J, et al.Experimental investigation on performance of desiccant coated microchannel heat exchangers under condensation conditions[J]. Energy and Buildings, 2021, 231: 110622. |
[106] | Sun X Y, Dai Y J, Ge T S, et al.Heat and mass transfer comparisons of desiccant coated microchannel and fin-and-tube heat exchangers[J]. Applied Thermal Engineering, 2019, 150: 1159-1167. |
[107] | Wang C, Ji X, Yang B, et al.Study on heat transfer and dehumidification performance of desiccant coated microchannel heat exchanger[J]. Applied Thermal Engineering, 2021, 192: 116913. |
[108] | Li K, Xia D, Luo S, et al.An experimental investigation on the frosting and defrosting process of an outdoor heat exchanger in an air conditioning heat pump system for electric vehicles[J]. Applied Thermal Engineering, 2022, 201: 117766. |
[1] | LEI Shangwen, SONG Mengjie, ZHANG Long, ZHANG Xuan. An experimental study of gravity effect on the micro and dynamic frost characteristics on simple cold plate surfaces under natural convection [J]. Journal of Appliance Science & Technology, 2022, 0(5): 71-75. |
[2] | TIAN Yasong, XU Gengbin, LIAO Min. Experimental research and optimization of defrosting control technology for variable frequency air conditioner [J]. Journal of Appliance Science & Technology, 2022, 0(5): 76-79. |
[3] | JIANG Yonggang, JIANG Bin, XIONG Keyong, LIANG Guisheng. Frost free refrigerator research, application of defrosting fuse fault analysis, reliability design [J]. Journal of Appliance Science & Technology, 2022, 0(4): 84-87. |
[4] | MA Peipei, TAN Yuhui, TIAN Jie, LIU Danhua, TAN Yufeng. The impact study of refrigerant leakage on frosting characteristics of the dehumidifier [J]. Journal of Appliance Science & Technology, 2022, 0(1): 86-90. |
[5] | CHEN Pengyu, HE Changye, LIN Chaojie, WU Sheng. Abnormal performance analysis and optimization of parallel flow heat exchanger [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 9-13. |
[6] | JI Ansheng, TAN Zhouheng, DU Shunkai, ZENG Xiaolang. Application of phase change heat storage in air conditioning defrost system [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 234-237. |
[7] | DAI Chuanmin, TENG Zhaolong, MA Qiang, ZHANG Mingjie. Experimental study of the parallel flow heat exchanger in cabinet air conditioning [J]. Journal of Appliance Science & Technology, 2021, 0(6): 42-44. |
[8] | MAO Shoubo, REN Tao. Dynamic model and validation of air conditioners under frosting conditions [J]. Journal of Appliance Science & Technology, 2021, 0(6): 60-64. |
[9] | LIU Xia, WEI Ziyan, LIU Zhongbao. Study on hot gas bypass defrosting performance of condensing heat recovery in supermarket freezing cabinet [J]. Journal of Appliance Science & Technology, 2021, 0(5): 52-58. |
[10] | ZHANG Qihua, CHEN Kaisong, KONG Jun, HU Mingyong. Experimental analysis on frost suppression of hydrophobic materials on refrigerator evaporator [J]. Journal of Appliance Science & Technology, 2020, 0(zk): 188-189. |
[11] | XU Yanhui. Discussion on design of light commercial hot air defrost compressor [J]. Journal of Appliance Science & Technology, 2020, 0(zk): 200-203. |
[12] | YANG Yue, ZHAO Ruochen, WANG Weige, LI Dasen. Research on improvement method of household air conditioner parallel flow evaporator abnormal fin noise [J]. Journal of Appliance Science & Technology, 2020, 0(3): 44-48. |
[13] | WANG Chun. Experimental study on hot gas defrosting based on electronic expansion valve control [J]. Journal of Appliance Science & Technology, 2019, 0(1): 60-63. |
[14] | MA Di, BI Haibo, ZHU Li. Optimization of refrigerator refrigeration system by intermittent defrosting control [J]. Journal of Appliance Science & Technology, 2019, 0(1): 68-69. |
[15] | LI Wei1, GE Wenkai1, ZHUANG Changyu1, LI Tianping2, JIANG Jianpin1, ZHOU Zhicheng1. Study on cryogenic performance of solar heat pump water heater [J]. Journal of Appliance Science & Technology, 2019, 0(1): 82-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||