[1] Guiyuan Wang, Zhiguang Guo, Weimin Liu.Interfacial Effects of Superhydrophobic Plant Surfaces: A Review[J]. Journal of Bionic Engineering, 2014(03): 325-345. [2] J. J. Victor, D. Facchini, U. Erb.A low-cost method to produce superhydrophobic polymer surfaces[J]. Journal of Materials Science, 2012(47): 3690-3697. [3] 刘金丹. 铝合金表面多尺度仿生疏水多功能表面的制备及机理研究[D]. 长春: 吉林大学, 2014. [4] Yong Min Park, Myeong Gang, Young Ho Seo, et al.Artificial petal surface based on hierarchical micro-and nanostructures[J]. Thin Solid Films, 2011(520): 362-367. [5] Takashi Nishino, Masashi Meguro, Katsuhiko Nakamae, Motonori Matsushita, Yasukiyo Ueda.The Lowest Surface Free Energy Based on-CF3 Alignment[J]. Langmuir, 1999(15): 4321-4323. [6] Jianzhong Zhu, Giovanni Zangari, Michael L.Reed. Three-phase contact force equilibrium of liquid drops at hydrophilic and superhydrophobic surfaces[J]. Journal of Colloid And Interface Science, 2013(404): 179-182. [7] 陈云富, 尹冠军. 化学刻蚀法制备铝合金基超疏水表面[J]. 科学技术与工程, 2007(12): 6719-6721. [8] Jinlong Song, Wenji Xu, Yao. One-step electrochemical machining of superhydrophobic surfaces on aluminum substrates[J]. Journal of Materials Science, 2012(47): 162-168. [9] Wang YY, Xue J, Wang QJ, et al.Verification of Ice phobic/Anti-icing Properties of a Superhydrophobic Surface[J]. Applied Materials & Interfaces, 2013(05): 3370-3381. [10] Qi Y, Cui Z, Liang B, et al.A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science, 2014(305): 716-724. [11] Jing Li, Feng Du, Xianli Liu, et al.Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing[J]. Journal of Bionic Engineering, 2011(04): 369-374. [12] 邵浩, 张学斌, 刘莎莎, 等. 静电纺丝技术的应用及其发展前景[J]. 广州化工, 2011(02): 42-43+49. [13] Cao L, Wan Y, Zhang Q.Fabrication and mechanical durability of superhydrophobic films on aluminum[J]. Journal of Non-Crystalline Solids, 2015(410): 35-38. [14] L Yao, M Zheng, M Li, et al.Self-assembly of diverse alumina architectures and their morphology-dependent wettability[J]. Materials Research Bulletin, 2011(46): 1403-1408. [15] 臧洁. 氧化铝超疏水表面的制备及性能研究[D]. 青岛: 中国石油大学(华东), 2021. [16] 王甜, 王宝和. 纳米水滴在光滑壁面上润湿行为的分子动力学模拟[J]. 河南化工, 2015(01): 1003-3467. [17] Man J, Zhang S, Li JF, et al.Effects of electrolyte pH on morphologies and mechanical properties of α-Al2O3/Ni composite coatings and role of zeta potentials in co-deposition process[J]. Surface & Coatings Technology, 2014(249): 118-124. [18] Meng KK, Jiang Y, Jiang ZH, et al.Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic[J]. Applied Surface Science, 2014(290): 320-326. [19] 叶向阳, 武滔, 刘奕燎. 超疏水涂层应用于空调换热器的实验研究[J]. 家电科技, 2018(03): 66-69. [20] Liu HT, Wang XM, Ji HM.Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating[J]. Applied Surface Science, 2014(288): 341-348. [21] Gao Lichao, McCarthy Thomas J. The "Lotus Effect" Explained: Two Reasons Why Two Length Scales of Topography Are Important[J]. Langmuir, 2006(07): 2966-2967. [22] Miwa M, Nakajima A, Fujishima A, et al.Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000(13): 5754-5760. [23] Wenzel, Robert N.Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society, 1936(08): 988-994. |