Journal of Appliance Science & Technology ›› 2022, Vol. 0 ›› Issue (4): 58-65.doi: 10.19784/j.cnki.issn1672-0172.2022.04.009
• Articles • Previous Articles Next Articles
JIANG Xin, LI Amin, CHEN Dongpo
Online:
2022-08-01
Published:
2022-08-18
CLC Number:
JIANG Xin, LI Amin, CHEN Dongpo. Research progress of radio frequency heating technology for food thawing and cooking[J]. Journal of Appliance Science & Technology, 2022, 0(4): 58-65.
[1] PIYASENA P, DUSSAULT C, KOUTCHMA T, et al.Radio frequency heating of foods: principles, applications and related properties--a review[J]. Critical reviews in food science and nutrition, 2003, 43(06): 587-606. [2] ZHANG Y, PANDISELVAM R, ZHU H, et al.Impact of radio frequency treatment on textural properties of food products: An updated review[J]. Trends in Food Science & Technology, 2022, 124: 154-166. [3] 兰软格. 多组分披萨射频加热特性研究[D]. 杨凌: 西北农林科技大学, 2020. [4] BEDANE T F, QUINN G, LYNG J G.Innovative Food Processing Technologies[M]. Amsterdam: Elsevier, 2021: 743-766. [5] MOYER J C, STOTZ E.The Electronic Blanching of Vegetables[J]. Science, 1945, 102(2638): 68-69. [6] GUO C, MUJUMDAR A S, ZHANG M.New Development in Radio Frequency Heating for Fresh Food Processing: a Review[J]. Food Engineering Reviews, 2019, 11(01): 29-43. [7] 贾敬敦, 马海乐, 葛毅强, 等. 食品物理加工技术与装备发展战略研究[M]. 北京: 科学出版社, 2016. [8] MARRA F, ZHANG L, LYNG J G.Radio frequency treatment of foods: Review of recent advances[J]. Journal of Food Engineering, 2009, 91(04): 497-508. [9] ZHOU X, WANG S.Recent developments in radio frequency drying of food and agricultural products: A review[J]. Drying Technology, 2019, 37(03): 271-286. [10] 朱经楠, 彭健, 辜青青, 等. 射频加热技术及其在果蔬干制中的研究应用进展[J/OL]. 食品工业科技: 1-16. [11] LLAVE Y, TERADA Y, FUKUOKA M, et al.Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies[J]. Journal of Food Engineering, 2014, 139: 1-9. [12] 李双. 鱼类介电特性及射频解冻工艺研究[D]. 上海: 上海海洋大学, 2020. [13] 刘富康, 张柔佳, 李锋, 等. 解冻方式对冷冻鱼糜解冻效果和凝胶特性的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(04): 681-685. [14] KORAY PALAZOĞLU T, MIRAN W. Experimental comparison of microwave and radio frequency tempering of frozen block of shrimp[J]. Innovative Food Science & Emerging Technologies, 2017, 41: 292-300. [15] FARAG K W, LYNG J G, MORGAN D J, et al.A comparison of conventional and radio frequency tempering of beef meats: Effects on product temperature distribution[J]. Meat Science, 2008, 80(02): 488-495. [16] FARAG K W, DUGGAN E, MORGAN D J, et al.A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics[J]. Meat Science, 2009, 83(02): 278-284. [17] CHOI E J, PARK H W, CHUNG Y B, et al.Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion[J]. Meat Science, 2017, 124: 69-76. [18] 朱亚莉. 猪肉的解冻工艺影响因素及解冻品质研究[D]. 上海: 上海海洋大学, 2020. [19] CHOI E J, PARK H W, YANG H S, et al.Effects of 27.12 MHz radiofrequency on the rapid and uniform tempering of cylindrical frozen pork loin[J]. Korean journal for food science of animal resources, 2017, 37(04): 518-528. [20] 张林青. 基于射频加热的食品解冻技术研究[D]. 济南: 山东大学, 2015. [21] 姜纪伟, 周纷, 张艳霞, 等. 射频解冻过程中食品加热均匀性影响因素的研究进展[J]. 食品安全质量检测学报, 2020, 11(20): 7354-7360. [22] MUÑOZ I, SERRA X, GUÀRDIA M D, et al. Radio frequency cooking of pork hams followed with conventional steam cooking[J]. LWT-Food Science and Technology, 2020, 123: 109104. [23] ZHANG L, LYNG J G, BRUNTON N P.Effect of radio frequency cooking on the texture, colour and sensory properties of a large diameter comminuted meat product[J]. Meat Science, 2004, 68(02): 257-268. [24] BRUNTON N P, LYNG J G, WENQU L, et al.Effect of radio frequency (RF) heating on the texture, colour and sensory properties of a comminuted pork meat product[J]. Food Research International, 2005, 38(03): 337-344. [25] TANG X, CRONIN D A, BRUNTON N P.The effect of radio frequency heating on chemical, physical and sensory aspects of quality in turkey breast rolls[J]. Food Chemistry, 2005, 93(01): 1-7. [26] LAYCOCK L, PIYASENA P, MITTAL G S.Radio frequency cooking of ground, comminuted and muscle meat products[J]. Meat Science, 2003, 65(03): 959-965. [27] LIMEI W, XIAN W, JING M, et al.Effects of radio frequency heating on water distribution and structural properties of grass carp myofibrillar protein gel[J]. Food Chemistry, 2021, 343: 128557. [28] FIORE A, Di MONACO R, CAVELLA S, et al.Chemical profile and sensory properties of different foods cooked by a new radiofrequency oven[J]. Food Chemistry, 2013, 139(01): 515-520. [29] JIANG H, LING B, ZHOU X, et al.Effects of combined radio frequency with hot water blanching on enzyme inactivation, color and texture of sweet potato[J]. Innovative Food Science & Emerging Technologies, 2020, 66: 102513. [30] 姚益顺. 射频烫漂灭酶对莴笋理化特性的影响及其细胞作用机理研究[D]. 杨凌: 西北农林科技大学, 2021. [31] WANG J, LUECHAPATTANAPORN K, WANG Y, et al.Radio-frequency heating of heterogeneous food - Meat lasagna[J]. Journal of Food Engineering, 2012, 108(01): 183-193. [32] RINCON A M, SINGH R K, STELZLENI A M.Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a Radio Frequency oven[J]. LWT - Food Science and Technology, 2015, 64(02): 1323-1328. [33] 韩照华, 王涛, 张朋, 等. 智控射频加热技术在电烤箱上研究与应用[J]. 家电科技, 2021(zk): 155-159. [34] ZHANG S, HUANG Z, WANG S.Improvement of radio frequency (RF) heating uniformity for peanuts with a new strategy using computational modeling[J]. Innovative Food Science & Emerging Technologies, 2017, 41: 79-89. [35] LAN R, QU Y, RAMASWAMY H S, et al.Radio frequency reheating behavior in a heterogeneous food: A case study of pizza[J]. Innovative Food Science & Emerging Technologies, 2020, 65: 102478. [36] A R L, A X K, A T C, et al.Verification of radio frequency pasteurization process for in-shell almonds[J]. Journal of Food Engineering, 2017, 192: 103-110. [37] LIU Q, ZHANG M, XU B, et al.Effect of radio frequency heating on the sterilization and product quality of vacuum packaged Caixin[J]. Food & Bioproducts Processing, 2015, 95: 47-54. [38] 张汝怡, 李锋, 焦阳. 基于三维扫描和射频加热的食品升温过程模拟[J]. 食品与机械, 2019, 35(07): 39-44. [39] ZHANG R, LI F, TANG J, et al.Improved accuracy of radio frequency (RF) heating simulations using 3D scanning techniques for irregular-shape food[J]. LWT - Food Science and Technology, 2020, 121: 108951. [40] UYAR R, ERDOGDU F, MARRA F.Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: A computational study[J]. Food and Bioproducts Processing, 2014, 92(03): 243-251. [41] UYAR R, BEDANE T F, ERDOGDU F, et al.Radio-frequency thawing of food products-A computational study[J]. Journal of Food Engineering, 2015, 146: 163-171. [42] FERRARI-JOHN R S, KATRIB J, PALADE P, et al. A tool for predicting heating uniformity in industrial radio frequency processing[J]. Food & Bioprocess Technology, 2016, 9(11): 1-9. [43] 何佳玲, 陈璐, 张汝怡, 等. 不同形状尺寸冷冻牛肉的射频解冻均匀性探究[J]. 食品与机械, 2020, 36(02): 122-128. [44] F. B T, FERRUH E, G. L J, et al. Effects of geometry and orientation of food products on heating uniformity during radio frequency heating[J]. Food and Bioproducts Processing, 2021, 125: 149-160. [45] BEDANE T F, CHEN L, MARRA F, et al.Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt[J]. Journal of Food Engineering, 2017, 201: 17-25. [46] ERDOGDU F, ALTIN O, MARRA F, et al.A computational study to design process conditions in industrial radio-frequency tempering/thawing process[J]. Journal of Food Engineering, 2017, 213: 99-112. [47] ZHANG Z, GUO C, GAO T, et al.Pilot‐scale radiofrequency blanching of potato cuboids: heating uniformity[J]. Journal of the Science of Food & Agriculture, 2017, 98(01): 312-320. |
[1] | ZHANG Qingling, LI Peng, YAO Yanchun, LIU Ying, WANG Tongshuai, LU Jianguo. Research on energy efficiency grade standard of disinfecting tableware cabinet [J]. Journal of Appliance Science & Technology, 2022, 0(5): 54-57. |
[2] | DAI Baomin, WU Tianhao, LI Xiaoyan, LIU Shengchun, DOU Yanwei, GUAN Haiqing, GUO Qiang. Prediction of energy efficiency of R290 air conditioner based on thermodynamic perfectibility [J]. Journal of Appliance Science & Technology, 2022, 0(5): 87-93. |
[3] | WU Wei, XIAO Peng, CHEN Fengting. Analysis and interpretation of energy efficiency test method of air circulation fan [J]. Journal of Appliance Science & Technology, 2022, 0(5): 99-101. |
[4] | MA Xiaoyang, LU Guoyong. Comparative study on single or double inlet performance of integrated cooking appliance [J]. Journal of Appliance Science & Technology, 2022, 0(5): 102-105. |
[5] | CUI Mingming, MA Guoyuan, CAO Ruilin, DANG Pengfei, XU Shuxue. Experimental study on direct floor radiant heating with air source heat pump [J]. Journal of Appliance Science & Technology, 2022, 0(4): 96-101. |
[6] | GAO Hao, QI Wenduan, ZHANG Hao. Performance experimental study on applying different types of refrigerants to parking vehicle air conditioner [J]. Journal of Appliance Science & Technology, 2022, 0(3): 22-25. |
[7] | SONG Liqiang, MIAO Qing, WAN Cheng, CAO Yanxin. Research on sound quality evaluation and modeling of refrigerators [J]. Journal of Appliance Science & Technology, 2022, 0(3): 32-35. |
[8] | OU Shuowen, ER Chima. Study on an evaporator flow path biased to intermediate energy efficiency based on Japanese APF [J]. Journal of Appliance Science & Technology, 2022, 0(3): 58-63. |
[9] | WANG Boyan. Evaluation of uncertainty in testing the fluid dynamic efficiency of range hood [J]. Journal of Appliance Science & Technology, 2022, 0(3): 86-91. |
[10] | LI Youxia, JI Xiaowei, WANG Xianlin, CHEN Zhiwei, CHEN Yingqiang. Design and application research on reliability of the all-plastic air deflector for heat pump air conditioner [J]. Journal of Appliance Science & Technology, 2022, 0(3): 102-105. |
[11] | ZHANG Yongmeng, LI Hongwei, ZHOU Rongpei, PAN Wei. Research on quality improvement method of IoT appliances based on user big data analysis [J]. Journal of Appliance Science & Technology, 2022, 0(3): 114-119. |
[12] | DING Longhui, ZHANG Haipeng, SUN Jinglong, PAN Yiguang. Research on noise improvement design and sound quality evaluation of refrigerator electric valve [J]. Journal of Appliance Science & Technology, 2022, 0(2): 87-91. |
[13] | WANG Shiqi, XU Xiangang, DONG Jiankai, LIU Jing, WANG Zhaojun. Test and evaluation methods on capture performance of range hood [J]. Journal of Appliance Science & Technology, 2022, 0(1): 22-27. |
[14] | ZOU Jianhuang. The floor standing air conditioner with new-type independent dual airflow for cooling and heating [J]. Journal of Appliance Science & Technology, 2022, 0(1): 44-47. |
[15] | YAN Ling, ZHU Yan. The concept of quality grading standards of household electrical appliances [J]. Journal of Appliance Science & Technology, 2022, 0(1): 74-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||