Journal of Appliance Science & Technology ›› 2022, Vol. 0 ›› Issue (zk): 475-480.doi: 10.19784/j.cnki.issn1672-0172.2022.99.104
Previous Articles Next Articles
LI Xue1,2, WANG Haiyan1,2
Published:
2023-03-28
CLC Number:
LI Xue, WANG Haiyan. Research progress on antibacterial properties of graphene-based photocatalytic materials[J]. Journal of Appliance Science & Technology, 2022, 0(zk): 475-480.
[1] 胡海梅, 张宇佳. 深紫外杀菌及应用于冰箱技术研究[J]. 家电科技, 2020(zk): 47-49. [2] 王海燕, 胡哲, 周伟洪. 冰箱保鲜技术综述[J]. 电器, 2019(02): 24-25. [3] MA Kausor, D Chakrabortty. Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges[J]. Inorganic Chemistry Communications, 2021, 129: 108630. [4] NLM Tri, J Kim, DV Thuan, PT Huong, TMA Tahtamouni. Improved photocatalytic decomposition of methyl ethyl ketone gas from indoor air environment by using TiO2/graphene oxide[J]. Materials Research Express, 2019, 6(10): 105509. [5] Y Li, X Xiao, Z Ye, Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance[J]. Applied Surface Science, 2019, 467: 902-911. [6] M Tadashi, T Ryozo, N Toshiaki, W Hitoshi.Photo-electrochemical sterilization of microbial cells by semiconductor powders[J]. Fems Microbiology Letters, 1985(1-2): 211-214. [7] 胡哲, 周伟洪, 朱雪峰, 王海燕. 光触媒模块在冰箱上的应用效果探究[J]. 家电科技, 2019(04): 72-76. [8] YJ Shi, JX Ma, YN Chen, YK Qian, BX, WH Chu, DA. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review[J]. Science of The Total Environment, 2022, 804: 150024. [9] M Ismael.Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review[J]. Fuel, 2021, 303: 121207. [10] V Dutta, P Singh, P Shandilya, S Sharma, P Raizada, A K Saini, V K Gupta, A Hosseini-Bandegharaei, S Agarwal, A Rahmani-Sani.Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites[J]. Journal of Environmental Chemical Engineering, 2019, 7(03): 103132. [11] NT Padmanabhan, N Thomas,J Louis, DT Mathew, SC Pillai. Graphene coupled TiO2 photocatalysts for environmental applications: A review[J]. Chemosphere, 2021, 271(07): 129506. [12] C H Lin, WH Chen. Graphene Family Nanomaterials (GFN)-TiO2 for the Photocatalytic Removal of Water and Air Pollutants: Synthesis, Characterization, and Applications[J]. Nanomaterials, 2021, 11(12): 3195. [13] E Kusiak-Nejman, AW Morawski. TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 253: 179-186. [14] A Bokare, S Chinnusamy, F Erogbogbo.TiO2-graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications[J]. Catalysts, 2021, 11(03): 319. [15] F Khan, M S Khan, S Kamal, M Arshad, S I Ahmad, SAA Nami. Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes[J]. Journal of Materials Chemistry C, 2020, 8(45): 15940-15955. [16] 雷绍民, 熊毕华, 郝骞, 郭高丽. 纳米TiO2复合抗菌材料抗菌机理与研究进展[J]. 资源环境与工程, 2006, 20(04): 459-462. [17] 王振翠. 二氧化钛纳米材料的制备及其对农药乐果的光催化性能研究[D]. 北京: 北京化工大学, 2015. [18] BC Cao, SC, PY Dong, J Gao, J Wang. High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation[J]. Materials Letters, 2013, 93: 349-352. [19] J Liu, L Liu, H Bai, Y Wang, DD Sun. Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials[J]. Applied Catalysis B: Environmental, 2011, 106: 76-82. [20] L Liu, H Bai, J Liu, DD Sun. Multifunctional graphene oxide-TiO2 -Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation[J]. Journal of Hazardous Materials, 2013, 261: 214-223. [21] A Raja, K Selvakumar, P Rajasekaran, M Arunpandian, S Ashokkumar, K Kaviyarasu, S Asath Bahadur, M Swaminathan.Visible active reduced graphene oxide loaded Titania for photodecomposition of ciprofloxacin and its antibacterial activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564: 23-30. [22] P Gao, AR Li, DD Sun, WJ Ng. Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2[J]. Journal of hazardous materials, 2014, 279: 96-104. [23] YN Chang, XM Ou, GM Zeng, JL Gong, CH Deng, Y Jiang, J Liang, GQ Yuan, HY Liu, X He. Synthesis of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation[J]. Applied Surface Science, 2015, 343: 1-10. [24] P Fernández-Ibáñez, MI Polo-López, S Malato, S Wadhwa, JWJ Hamilton, PSM Dunlop, R D’Sa, E Magee, K O’Shea, DD Dionysiou, JA Byrne. Solar photocatalytic disinfection of water using titanium dioxide graphene composites[J]. Chemical Engineering Journal, 2015, 261: 36-44. [25] JJ Xu, ZL Tian, GH Yin, TQ Lin, FQ Huang.Controllable reduced black Titania with enhanced photoelectrochemical water splitting performance[J]. Dalton Transactions, 2017, 46: 1047-1051. [26] 长沙理工大学. 一种羟基化氧化钛/石墨烯可见光催化材料的制备方法: 中国, CN105148894B[P].2015-12-16. [27] A Biswas, G Salunke, P Khandelwal, R Das, P Poddar.Surface disordered rutile TiO2-graphene quantum dot hybrids: a new multifunctional material with superior photocatalytic and biofilm eradication properties[J]. New Journal of Chemistry, 2017, 41(07): 2642-2657. [28] 黄富强, 周策. 一种半导体广谱杀菌抗病毒复合材料和制备方法: 中国, CN111359642B[P].2021-06-11. [29] 曾和平, 冯光, 胡梦云. 一种适用于光催化持续释放型的除味净味液体及制备方法: 中国, CN114289008A[P].2022-04-08. [30] XF Yang, JL Qin, Y Jiang, R Li, Y Li, H Tang. Bifunctional TiO2/Ag3PO4/Graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria[J]. Rsc Advances, 2014, 4(36): 18627-18636. [31] 梁大宇. 石墨烯基半导体纳米复合材料的制备、表征及其光催化性能研究[D]. 杭州: 浙江理工大学, 2014. [32] X Yang, J Qin, Y Jiang, K Chen, X Yan, D Zhang, R Li, H Tang. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria[J]. Applied Catalysis B: Environmental, 2015, 166-167: 231-240. [33] C Liu, Y Lin, YF Dong, YK Wu, Y Bao, HX Yan, JZ Ma. Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance[J]. Advanced composites and hybrid materials, 2020, 3(03): 402-414. [34] AK Mehdi, C Dhruba. Facile fabrication of N-TiO2/Ag3PO4@GO nanocomposite toward photodegradation of organic dye under visible light[J]. Inorganic Chemistry Communications, 2020, 116: 107907. [35] 李君建. 载银二氧化钛/石墨烯复合材料的制备及其催化杀菌性能的研究[D]. 太原: 中北大学, 2017. [36] 朱慧娟. TiO2为基础的复合材料光(光电)催化抗菌性能及机理研究[D]. 上海: 上海师范大学, 2017. [37] X Ma, Q Xiang, Y Liao, T Wen, H Zhang.Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation[J]. Applied Surface Science, 2018, 457: 846-855. [38] HP Qi, HL Wang, DY Zhao, WF Jiang.Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation[J]. Applied Surface Science, 2019, 480: 105-114. [39] HP Qi, HL Wang, DY Zhao.Facile synthesis of rGO-supported AgI-TiO2 mesocrystals with enhanced visible light photocatalytic activity[J]. Nanotechnology, 2020, 31(37): 375701. [40] H Teymourini, M Salavati-Niasari, O Amiri, F Yazdian.Application of green synthesized TiO2/Sb2S3/GQDs nanocomposite as high efficient antibacterial agent against E. coli and Staphylococcus aureus[J]. Materials Science and Engineering: C, 2019, 99: 296-303. [41] L Sun, T Du, C Hu, J Chen, J Lu, Z Lu, H Han.Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 8693-8701. [42] 孙龙. 氧化石墨烯复合材料对病原菌的抗菌效应研究[D]. 武汉: 华中农业大学, 2016. [43] A Malathi, J Madhavan, M Ashokkumar, P Arunachalam.A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications[J]. Applied Catalysis A: General, 2018, 555: 47-74. [44] 高品. 还原氧化石墨烯负载钨酸铋/二氧化钛复合可见光触媒抗菌材料及其制备方法: 中国, CN 110352983 A[P].2019-07-16. [45] TF Tian, XZ Shi, L Cheng, YC Luo, ZL Dong, H Gong, LG Xu, ZT Zhong, R Peng, Z Liu. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent[J]. ACS applied materials & interfaces, 2014, 6(11): 8542-8548. [46] N Khadgi, AR Upreti, Y Li. Simultaneous bacterial inactivation and degradation of an emerging pollutant under visible light by ZnFe2O4 co-modified with Ag and rGO[J]. RSC Advances, 2017, 7: 27007-27016. [47] D Xia, T An, G Li, W Wang, H Zhao, PK Wong. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic Ag AgX (X=Cl, Br, I) composite photocatalyst under visible light irradiation[J]. Water Research, 2016, 99: 149-161. [48] G Wang, WJ Feng, XK Zeng, ZY Wang, CP Feng, DT McCarthy, A Deletic, XW Zhang. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection[J]. Water Research (Oxford), 2016, 94: 363-370. [49] X Zeng, Z Wang, G Wang, TR Gengenbach, DT McCarthy, A Deletic, J Yu, X Zhang. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection[J]. Applied Catalysis B: Environmental, 2017, 218: 163-173. |
[1] | LIU Zhijun, JIANG Xiaokui, HE Wenhua, YANG Tingchao, GAO Xuan. Study on the application of logarithmic spiral volute in refrigerator air duct [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 72-76. |
[2] | WU Yiqiang, WU Yuan, ZHANG Bo. Optimization study on air duct design of three-door variable temperature refrigerator [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 127-129. |
[3] | DING Longhui, SUN Jinglong, PAN Yiguang, ZHANG Zongxin, QI Congshan. Research on noise reduction design of large size centrifugal fan and duct in refrigerator [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 148-153. |
[4] | ZHANG Yanyan, XU Xin, WANG Xi, WEN Na, LI Xiaojuan, JIAO Can. Research on harmonic current suppression scheme of frequency conversion refrigerator [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 251-255. |
[5] | DONG Anqi, MA Keshuai, WANG Guoqing, SUN Bin. Analysis of the heat transfer performance of the circular tube and flat tube condenser in refrigerator [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 260-266. |
[6] | YANG Zhong, HUANG Gang, CHEN Xinjie, ZHANG Yangyang. Fitting method of full performance curve of refrigerator compressor [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 284-288. |
[7] | XU Lele, YAN Gang. Review on research status and prospect of exhaust pulsation of reciprocating refrigerator compressor [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 366-370. |
[8] | YIN Lu, XUE Yang, YANG Qingbo, CAO Yunyi, CAO Haoqiang. Study on antibacterial passivation technology of washing machine inner barrel stainless steel [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 508-511. |
[9] | HAN Yanlong, WANG Dong, SUN Yuan. Application and research progress of phase change materials in domestic refrigerators [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 573-581. |
[10] | LIU Zhihao, LU Bingqi, ZHU Jiangao, DAI Fengfeng. Research on demand and application of intelligent refrigerator suitable for aging scenarios [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 592-595. |
[11] | ZHONG Yuanyuan, HOU Tingyi, GUO Shengfu, LIU Zengjian. AI application and comprehensive inspection analysis in refrigerator production line [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 778-781. |
[12] | SUN Peng, HU Zhe, ZHAO Jindan, YANG Haijin, DENG Rongjiao. Interpretation of T/CNLIC 0040-2021 "Household refrigerator-Test method and evaluation requirements for infants and young children food preservation function" [J]. Journal of Appliance Science & Technology, 2022, 0(zk): 798-800. |
[13] | WU Huanlong, HAN Luyao, YU Linjun, LIU Weirui. Application of TRIZ theory in intelligent flowerpot design [J]. Journal of Appliance Science & Technology, 2022, 0(6): 68-71. |
[14] | ZHENG Fangyuan, HAN Lili, ZHANG Yue, ZHANG Shenggang, SUN Qidong. Effect of cooling deformation properties of rigid polyurethane foam on thermal deformation of refrigerator door [J]. Journal of Appliance Science & Technology, 2022, 0(6): 75-79. |
[15] | CHEN Gang, ZHU Jinjiang, MENG Biguang, QIN Zongmin, LI Jingrui. Study on the factors affecting the characteristics of compressor suction muffler [J]. Journal of Appliance Science & Technology, 2022, 0(4): 36-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|