家电科技 ›› 2025, Vol. 0 ›› Issue (zk): 330-333.doi: 10.19784/j.cnki.issn1672-0172.2025.99.069

• 第三部分 健康适老与智能 • 上一篇    下一篇

基于双分支前馈神经网络的室内热物理场预测

彭裕辉1, 孙佳琪1, 于德涛2, 蔡姗姗2   

  1. 1.小米科技(武汉)有限公司 湖北武汉 430000;
    2.华中科技大学能源与动力工程学院 湖北武汉 430000
  • 发布日期:2025-12-30
  • 通讯作者: 于德涛,d202580690@hust.edu.cn。
  • 作者简介:彭裕辉,学士学位,中级工程师。研究方向:制冷系统设计和制冷系统性能预测。地址:湖北省武汉市东湖新技术开发区江夏区金培路小米武汉科技园。E-mail:pengyuhui@xiaomi.com。
  • 基金资助:
    国家自然科学基金项目(52476199)

Indoor thermophysical field prediction based on dual-branch feed forward neural network

PENG Yuhui1, SUN Jiaqi1, YU Detao2, CAI Shanshan2   

  1. 1. Xiaomi Technology (Wuhan) Co., Ltd. Wuhan 430000;
    2. College of Energy and Power Engineering, Huazhong University of Science and Technology Wuhan 430000
  • Published:2025-12-30

摘要: 为解决传统计算流体力学(Computational Fluid Dynamics, CFD)在模拟室内气流组织时的计算成本高、周期长等问题,构建了基于分类算法的双分支前馈神经网络,实现了制热工况下室内热物理场的快速预测及热舒适分区。针对速度场与温度场的不同物理特性,提出差异化分类策略,速度采用主流/低速二分类,温度采用过冷/舒适/过热三分类。研究表明,速度场预测的平均准确率达到95.1%,能准确识别主流区域,并表现出良好的尺度鲁棒性;温度场预测准确率超过95%,能精准复现不同温区的空间分布。在此基础上,研究了三分类对速度场的预测,结果表明二分类的成本效益比最高,既可满足设计需求又避免计算成本的增加。该模型在保证精度的同时可实现热物理场的快速预测,为空调送风优化与节能设计提供了依据。

关键词: 双分支前馈神经网络, 分类算法, 差异化分类, 速度/温度场, 鲁棒性

Abstract: To address the issues of high computational cost and long cycle time associated with traditional Computational Fluid Dynamics (CFD) in simulating indoor airflow patterns, a dual-branch feed-forward neural network based on classification algorithms was constructed. This network enables the rapid prediction of indoor thermophysical fields and thermal comfort zoning under heating conditions. In view of the distinct physical characteristics of velocity fields and temperature fields, a differentiated classification strategy was proposed: a binary classification (mainstream / low-velocity) was adopted for velocity, while a ternary classification (overcool / comfortable / overheat) was employed for temperature. The research results demonstrate that the average prediction accuracy of the velocity field reaches 95.1%, which can accurately identify mainstream regions and exhibits excellent scale robustness. Meanwhile, the prediction accuracy of the temperature field exceeds 95%, enabling the precise reproduction of the spatial distribution of different temperature zones. Based on this, the prediction of the velocity field by the three-classification was studied. The results show that the cost-benefit ratio of the binary classification is the highest, which can not only meet the design requirements but also avoid the increase of computational costs. While ensuring prediction accuracy, the proposed model can achieve rapid prediction of thermophysical fields, thereby providing a basis for the optimization of air conditioning supply and energy-saving design.

Key words: Dual-branch feed-forward neural network, Classification algorithm, Differentiated classification, Velocity/temperature field, Robustness

中图分类号: