家电科技 ›› 2024, Vol. 0 ›› Issue (3): 84-91.doi: 10.19784/j.cnki.issn1672-0172.2024.03.014
贾潇雅1,3, 汪超1,2,3, 曹瑞林1, 汪亮兵1,3, 石里明1, 杨晓玲1,3
出版日期:
2024-06-01
发布日期:
2024-07-24
作者简介:
贾潇雅,博士学位。研究方向:制冷暖通系统节能技术研究。地址:北京市西城区月坛北小街6号。E-mail:jiaxy@cheari.com。
基金资助:
JIA Xiaoya1,3, WANG Chao1,2,3, CAO Ruilin1, WANG Liangbing1,3, SHI Liming1, YANG Xiaoling1,3
Online:
2024-06-01
Published:
2024-07-24
摘要: 梳理了应用于热水器的固-液相变材料在稳定性、传热效率和光热转化效率三方面的性能优化研究及其在热水器中的应用研究进展,并对蓄热式热水器的发展方向提出了建议和展望。研究表明,国内外对于相变材料在热水器中的应用研究多集中于蓄热材料性能提升(蓄热能力、热导率、稳定性)及应用效果和效率提升方面,材料应用位置多见于热水器系统的水箱、蓄热器或集热器中,填充材料以石蜡居多。固-液相变材料的添加能够显著提升热水器性能,缩短加热时间,提升节能效果。但作为应用研究较少将应用成本纳入评价体系,仍需进一步结合相变材料的应用场景和经济性开展多目标综合评价研究,从而推动新型材料在热水器中的应用和推广。
中图分类号:
贾潇雅, 汪超, 曹瑞林, 汪亮兵, 石里明, 杨晓玲. 固-液相变材料在热水器中的应用综述[J]. 家电科技, 2024, 0(3): 84-91.
JIA Xiaoya, WANG Chao, CAO Ruilin, WANG Liangbing, SHI Liming, YANG Xiaoling. The application of solid-liquid phase change materials in water heaters: a systematic review[J]. Journal of Appliance Science & Technology, 2024, 0(3): 84-91.
[1] Geng J, Zhao C, Cao J, et al.Quantitative evaluation method of user-side resource adaptability for power grid different regulation demands[J]. Energy Reports, 2022, 8: 1002-1008. [2] Runqing H, Peijun S, Zhongying W.An overview of the development of solar water heater industry in China[J]. Energy Policy, 2012, 51: 46-51. [3] Ma B, Yu Y, Urban F.Green transition of energy systems in rural China: National survey evidence of households’discrete choices on water heaters[J]. Energy Policy, 2018, 113: 559-570. [4] 汪超, 赵洋, 宫赤霄, 等. 冰箱新式蓄冷方案的可行性分析[A]// 第二届中国制冷空调专业产学研论坛[C], 2013: 62-65. [5] Abokersh MH, El-Morsi M, Sharaf O, et al.On-demand operation of a compact solar water heater based on U-pipe evacuated tube solar collector combined with phase change material[J]. Solar Energy, 2017, 155: 1130-1147. [6] 谭辉平, 赖应杰. 基于S3C2410A的蓄热式热泵热水系统控制器硬件设计[J]. 家电科技, 2008(13): 56-57. [7] Fallah Najafabadi M, Farhadi M, Talebi Rostami H.Numerically analysis of a Phase-change Material in concentric double-pipe helical coil with turbulent flow as thermal storage unit in solar water heaters[J]. Journal of Energy Storage, 2022, 55: 105712. [8] Atinafu DG, Wang C, Dong W, et al.In-situ derived graphene from solid sodium acetate for enhanced photothermal conversion, thermal conductivity, and energy storage capacity of phase change materials[J]. Solar Energy Materials and Solar Cells, 2020, 205: 110269. [9] Liu T, Zhao Y, Lei Y, et al.Catalyst-free, reprocessable, intrinsic photothermal phase change materials networks based on conjugated oxime structure[J]. Chemical Engineering Journal, 2022, 450: 138144. [10] Shi T, Zhang M, Liu H, et al.Phase-change nanofluids based on n-octadecane emulsion and phosphorene nanosheets for enhancing solar photothermal energy conversion and heat transportation[J]. Solar Energy Materials and Solar Cells, 2022, 248: 112016. [11] Yu K, Liu Y, Yang Y.Enhanced thermal properties of polyethylene glycol/modified rice husk ash eco-friendly form-stable phase change material via optimizing support pore structure[J]. Journal of Energy Storage, 2021, 43: 103172. [12] Chen K, Ding J, Wang W, et al.Shape-stable Bi-Sn-In alloy/Ag/copper foam composite phase change material for thermal storage and management[J]. Chemical Engineering Journal, 2023, 454: 140087. [13] Jafaripour M, Sadrameli SM, Mousavi SAHS, et al.Experimental investigation for the thermal management of a coaxial electrical cable system using a form-stable low temperature phase change material[J]. Journal of Energy Storage, 2021, 44: 103450. [14] Ryu T-K, Baek S-W, Kang R-H, et al.Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds[J]. Journal of Controlled Release, 2018, 270: 237-245. [15] Kumar N, Gupta SK, Sharma VK.Application of phase change material for thermal energy storage: An overview of recent advances[J]. Materials Today: Proceedings, 2021, 44: 368-375. [16] Wang K, Zhang T, Wang T, et al.Microencapsulation of high temperature metallic phase change materials with SiCN shell[J]. Chemical Engineering Journal, 2022, 436: 135054. [17] Jamekhorshid A, Sadrameli SM, Farid M.A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. [18] Yang X, Liu Y, Lv Z, et al.Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102059. [19] Zhu S, Zou D, Bao J, et al.Synthesis and characterization of a novel high durability alloy microcapsule for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111262. [20] Halder S, Wang J, Fang Y, et al.Cenosphere-based PCM microcapsules with bio-inspired coating for thermal energy storage in cementitious materials[J]. Materials Chemistry and Physics, 2022, 291: 126745. [21] Luz Sánchez-Silva, Rodríguez JF, Romero A, et al.Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation[J]. Chemical Engineering Journal, 2010, 157: 216-222. [22] Wang Y, Xia TD, Feng HX, et al.Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage[J]. Renewable Energy, 2011, 36: 1814-1820. [23] Wang H, Luo J, Yang Y, et al.Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance[J]. Solar Energy, 2016, 139: 591-598. [24] Al-Shannaq R, Farid M, Al-Muhtaseb S, et al.Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials[J]. Solar Energy Materials and Solar Cells, 2015, 132: 311-318. [25] Zhang S, Feng D, Shi L, et al.A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. [26] Rehman T-u, Ali HM.Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling[J]. International Communications in Heat and Mass Transfer, 2018, 98: 155-162. [27] Liu G, Xiao T, Guo J, et al.Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure[J]. Applied Thermal Engineering, 2022, 212: 118564. [28] Yu XK, Tao YB, He Y, et al.Preparation and performance characterization of metal foam/paraffin/ single-walled carbon nanotube composite phase change material[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122825. [29] Chibani A, Dehane A, Merouani S, et al.Melting/solidification of phase change material in a multi-tube heat exchanger in the presence of metal foam: effect of the geometrical configuration of tubes[J]. Energy Storage and Saving, 2022(04): 241-258. [30] Fan S, Fan Z, Cheng H, et al.Integrated Sn/CNT@NC hierarchical porous gas diffusion electrode by phase inversion for electrocatalytic reduction of CO2[J]. Electrochimica Acta, 2022, 403: 139584. [31] Song J, Li Y, Tong R, et al.MnxOy embedded within CNT supporting porous carbon for enhanced lithium storage[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 110317. [32] Zhang J, Narh C, Lv P, et al.Preparation of novel form-stable composite phase change materials with porous silica nanofibrous mats for thermal storage/retrieval[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 1-10. [33] Zhang Y, Zheng S, Zhu S, et al.Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361-370. [34] Xu M, Gao Y, Fang F, et al.Experimental and unified mathematical frameworks of water-ice phase change for cold thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122536. [35] Qin M, Feaugas O, Zu K.Novel metal-organic framework (MOF) based phase change material composite and its impact on building energy consumption[J]. Energy and Buildings, 2022, 273: 112382. [36] Li A, Huang M, Hu D, et al.Polydopamine-coated metal-organic framework-based composite phase change materials for photothermal conversion and storage[J]. Chinese Chemical Letters, 2022: 107916. [37] Wang M, Li P, Yu F.Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605. [38] Yan X, Feng Y, Qiu L, et al.Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials[J]. Energy, 2021, 233: 121158. [39] Xiao S, Hu X, Jiang X, et al.Enhanced thermal performance of phase change materials supported by hierarchical porous carbon modified with polydopamine/nano-Ag for thermal energy storage[J]. Journal of Energy Storage, 2022, 49: 104129. [40] Chen K, Yu X, Tian C, et al.Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2014, 77: 13-21. [41] Pandey K, Ali SF, Gupta SK, et al.Facile technique to encapsulate phase change material in an amphiphilic polymeric matrix for thermal energy storage[J]. Applied Energy, 2021, 292: 116917. [42] Aramesh M, Shabani B.Metal foams application to enhance the thermal performance of phase change materials: A review of experimental studies to understand the mechanisms[J]. Journal of Energy Storage, 2022, 50: 104650. [43] Shi J, Du H, Chen Z, et al.Review of phase change heat transfer enhancement by metal foam[J]. Applied Thermal Engineering, 2023, 219: 119427. [44] Qureshi ZA, Elnajjar E, Al-Ketan O, et al.Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS)[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121001. [45] Cui W, Si T, Li X, et al.Heat transfer analysis of phase change material composited with metal foam-fin hybrid structure in inclination container by numerical simulation and artificial neural network[J]. Energy Reports, 2022, 8: 10203-10218. [46] Sanchouli M, Payan S, Payan A, et al.Investigation of the enhancing thermal performance of phase change material in a double-tube heat exchanger using grid annular fins[J]. Case Studies in Thermal Engineering, 2022, 34: 101986. [47] Duan J, Peng Z.Numerical investigation of nano-enhanced phase change material melting in the 3D annular tube with spiral fins[J]. Renewable Energy, 2022, 193: 251-263. [48] Liu L, Zhang X, Lin X.Experimental investigations on the thermal performance and phase change hysteresis of low-temperature paraffin/MWCNTs/SDBS nanocomposite via dynamic DSC method[J]. Renewable Energy, 2022, 187: 572-585. [49] Du Y, Zhou T, Zhao C, et al.Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs)[J]. International Journal of Heat and Mass Transfer, 2022, 182: 122017. [50] Xu B, Wang B, Zhang C, et al.Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials[J]. Thermochimica Acta, 2017, 652: 77-84. [51] Abu-Hamdeh NH, Khoshaim A, Alzahrani MA, et al.Study of the flat plate solar collector's efficiency for sustainable and renewable energy management in a building by a phase change material: Containing paraffin-wax/Graphene and Paraffin-wax/graphene oxide carbon-based fluids[J]. Journal of Building Engineering, 2022, 57: 104804. [52] Yan X, Zhao H, Feng Y, et al.Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials[J]. Composites Part B: Engineering, 2022, 228: 109435. [53] Dong Q, Sun B, Dong Z, et al.Construction of highly efficient heat conduction channels within expanded graphite/paraffin phase change composites and their thermophysical properties[J]. Energy Reports, 2022, 8: 7071-7084. [54] Yu XK, Tao YB.Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123433. [55] Wen R, Zhu X, Yang C, et al.A novel composite phase change material from lauric acid, nano-Cu and attapulgite: Preparation, characterization and thermal conductivity enhancement[J]. Journal of Energy Storage, 2022, 46: 103921. [56] Kohyani MT, Ghasemi B, Raisi A, et al.Melting of cyclohexane-Cu nano-phase change material (nano-PCM) in porous medium under magnetic field[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 142-151. [57] Zhang C, Hu X, Xiao S, et al.Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon[J]. Journal of Energy Storage, 2021, 43: 103174. [58] Xiao S, Hu X, Jiang L, et al.Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity[J]. Journal of Energy Storage, 2022, 54: 105238. [59] Han L, Zhang X, Ji J, et al.Research progress on the influence of nano-additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 105807. [60] Xu B, Wei Z, Hong X, et al.Preparation and characterization of novel microencapsulated phase change materials with SiO2/FeOOH as the shell for heat energy storage and photocatalysis[J]. Journal of Energy Storage, 2021, 43: 103251. [61] Singh SK, Verma SK, Kumar R.Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system[J]. Journal of Energy Storage, 2022, 48: 103977. [62] Zou L, Li S, Li L, et al.Synthesis of TiO2 shell microcapsule-based phase change film with thermal energy storage and buffering capabilities[J]. Materials Today Sustainability, 2022, 18: 100119. [63] Sun X, Yi M, Feng B, et al.Shape-stabilized composite phase change material PEG@TiO2 through in situ encapsulation of PEG into 3D nanoporous TiO2 for thermal energy storage[J]. Renewable Energy, 2021, 170: 27-37. [64] Manirathnam AS, Dhanush Manikandan MK, Hari Prakash R, et al.Experimental analysis on solar water heater integrated with Nano composite phase change material (SCi and CuO)[J]. Materials Today: Proceedings, 2021, 37: 232-240. [65] Hamali W.Modeling of CuO nanomaterial effects on phase change of paraffin using finite volume method[J]. Journal of Molecular Liquids, 2022, 363: 119898. [66] Zhang J, Sajadi SM, Chen Y, et al.Effects of Al2O3 and TiO2 nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors and phase change materials[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102114. [67] Tian D, Shi T, Wang X, et al.Magnetic field-assisted acceleration of energy storage based on microencapsulation of phase change material with CaCO3/Fe3O4 composite shell[J]. Journal of Energy Storage, 2022, 47: 103574. [68] Kee SY, Munusamy Y, Ong KS.Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage[J]. Applied Thermal Engineering, 2018, 131: 455-471. [69] Kong L, Li Y, Kong X, et al.A novel flexible and fluoride-free superhydrophobic thermal energy storage coating for photothermal energy conversion[J]. Composites Part B: Engineering, 2022, 232: 109588. [70] Zhang Y, Wang J, Qiu J, et al.Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. [71] Zhang Y, Li X, Li J, et al.Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy, 2018, 53: 579-586. [72] Colarossi D, Principi P.Yearly performance of a PV-PCM and water storage for domestic hot water energy demand[J]. Energy and Buildings, 2022, 274: 112451. [73] 王永川. 相变储热热泵热水器及其关键技术研究[D]. 杭州: 浙江大学, 2006. [74] Zou D, Ma X, Liu X, et al.Experimental research of an air-source heat pump water heater using water-PCM for heat storage[J]. Applied Energy, 2017, 206: 784-792. [75] Chaabane M, Mhiri H, Bournot P.Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)[J]. Energy Conversion and Management, 2014, 78: 897-903. [76] Wu J, Feng Y, Liu C, et al.Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater[J]. Applied Thermal Engineering, 2018, 142: 644-655. [77] Long J-Y, Zhu D-S.Numerical and experimental study on heat pump water heater with PCM for thermal storage[J]. Energy and Buildings, 2008, 40: 666-672. [78] Al-Kayiem HH, Lin SC.Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations[J]. Solar Energy, 2014, 109: 82-92. [79] Papadimitratos A, Sobhansarbandi S, Pozdin V, et al.Evacuated tube solar collectors integrated with phase change materials[J]. Solar Energy, 2016, 129: 10-19. [80] Allouhi A, Ait Msaad A, Benzakour Amine M, et al.Optimization of melting and solidification processes of PCM: Application to integrated collector storage solar water heaters (ICSSWH)[J]. Solar Energy, 2018, 171: 562-570. [81] Li C, Zhang B, Xie B, et al.Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater[J]. Sustainable Cities and Society, 2019, 44: 458-464. [82] Xie B, Li C, Zhang B, et al.Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater[J]. Energy and Built Environment, 2020(01): 187-198. [83] Yang H, Bai Y, Ge C, et al.Polyethylene glycol-based phase change materials with high photothermal conversion efficiency and shape stability in an aqueous environment for solar water heater[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106778. [84] Xue HS.Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage[J]. Renewable Energy, 2016, 86: 257-261. [85] 袁小永. 用于太阳能热水系统的无机水合盐相变蓄热装置研究[D]. 广州: 广东工业大学, 2015. [86] 巫江虹, 杨兆光, 吴青昊, 等. 热泵热水器用相变蓄热材料的性能研究[J]. 太阳能学报, 2011, 32(05): 674-679. [87] Kutlu C, Zhang Y, Elmer T, et al.A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs[J]. Renewable Energy, 2020, 152: 601-612. [88] Inkeri E, Tynjälä T, Nikku M.Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production[J]. Applied Thermal Engineering, 2022, 214: 118819. [89] Wang F, Wang Z, Zheng Y, et al.Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification[J]. Applied Energy, 2015, 139: 212-219. [90] Wang Z, Zheng Y, Wang F, et al.Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70: 808-816. [91] Wang Z, Wang F, Wang X, et al.Dynamic character investigation and optimization of a novel air-source heat pump system[J]. Applied Thermal Engineering, 2017, 111: 122-133. [92] 李新芳, 邹爱国, 吴继明, 等. 相变储能式热泵热水器的传热性能研究[J]. 广东化工, 2019, 46(18): 47-48. [93] Olfian H, Mousavi Ajarostaghi SS, Ebrahimnataj M, et al.On the thermal performance of evacuated tube solar collector integrated with phase change material[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102437. [94] Ma X, Liu Y, Liu H, et al.Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2018, 188: 73-80. [95] 洪泽. 含相变材料的蓄能型热水器储能特性研究[D]. 马鞍山: 安徽工业大学, 2019. [96] 屈仁均, 邹进, 吴家声. 一种新型家用电热水器的可行性研究[J]. 天津化工, 2002(01): 41-43. [97] 曾云. 关于相变蓄热式电热水器的探讨[J]. 中国战略新兴产业, 2017(24): 41-42. [98] 吴丽, 何杰, 鲁进利, 等. 电热水器内部结构优化及储能特性研究[J]. 过程工程学报, 2021, 21: 786-793. |
[1] | 邱瑾一, 王建飞, 黄湘云, 蔡想周, 王飞, 刘贤宝. 基于CFD的双胆单管电热水器的上下胆温差优化分析[J]. 家电科技, 2024, 0(3): 70-72. |
[2] | 杜韬, 朱冬伟, 陈明明, 孙永安. 双电热水器联供方案对热水量提升的研究[J]. 家电科技, 2023, 0(zk): 106-108. |
[3] | 赵婷, 王龙强, 颜超, 毕三宝. 燃气热水器中保温罐容积对恒温性能影响的数值模拟[J]. 家电科技, 2023, 0(zk): 140-144. |
[4] | 梁桂源, 温林, 丁泺火, 林玉绵, 瞿福元. 关于燃气热水器启停温差的研究[J]. 家电科技, 2023, 0(zk): 399-402. |
[5] | 金玉, 王晓春, 舒思未, 蔺士磊, 张洪烈, 汪秀君, 孟园园, 龚慧峰. 印度电热水器能效提升的仿真分析[J]. 家电科技, 2023, 0(zk): 503-506. |
[6] | 隋超, 诸葛国峰, 施研文, 邱瑾一, 刘洋, 师宁宁. 一种双胆单管电热水器设计[J]. 家电科技, 2023, 0(6): 46-50. |
[7] | 李晓红, 江先明, 黄逊青. 储水式电热水器测试环境湿度控制要求探讨[J]. 家电科技, 2023, 0(4): 99-103. |
[8] | 杜顺祥, 黄娟, 康乐, 赵日晶, 黄东. 空气源热泵热水器水箱加热动态特征及对水温分布的影响[J]. 家电科技, 2023, 0(3): 118-123. |
[9] | 毕三宝, 赵婷, 刘云, 王龙强, 范汇武. 浓淡燃烧热水器异常燃烧噪音原因分析的实验研究[J]. 家电科技, 2022, 0(zk): 117-121. |
[10] | 赵婷, 刘云, 范汇武, 王龙强, 刘金钊, 颜超, 毕三宝. 燃气热水器中燃烧器火焰摆动问题的分析与优化[J]. 家电科技, 2022, 0(zk): 521-526. |
[11] | 仝通通, 胡常青, 陈震霖, 何立模, 曹冠忠, 张洪烈. 燃气热水器点火传火性能分析及优化[J]. 家电科技, 2022, 0(zk): 565-568. |
[12] | 韩延龙, 王栋, 孙源. 相变材料在家用冰箱中的应用与研究进展[J]. 家电科技, 2022, 0(zk): 573-581. |
[13] | 胡亚欣, 焦利敏, 周立国, 刘冬阳, 刘泽超, 顾子谦. 浅析智能技术在储水式电热水器运行过程中的低碳节能作用[J]. 家电科技, 2022, 0(zk): 589-591. |
[14] | 薛祥玉, 管江勇, 曹冠忠, 王长刚. 基于知识图谱的智慧热水器节能低碳运行技术研究及应用[J]. 家电科技, 2022, 0(zk): 679-681. |
[15] | 姚青梅, 胡亚欣, 焦利敏, 魏明然. 《智能家用电器的智能化技术 燃气快速热水器的特殊要求》标准解读[J]. 家电科技, 2022, 0(zk): 754-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|