家电科技 ›› 2024, Vol. 0 ›› Issue (zk): 445-448.doi: 10.19784/j.cnki.issn1672-0172.2024.99.094

• 第四部分 健康适老与智能 • 上一篇    下一篇

长上下文学习在家电知识问答中的应用

周少龙1,2,3, 刘广通1,2,3, 窦方正1,2,3, 刘朝振1,2,3   

  1. 1.青岛海尔科技有限公司 山东青岛 266100;
    2.数字家庭网络国家工程研究中心 山东青岛 266100;
    3.山东省智慧家庭人工智能与自然交互研究重点实验室 山东青岛 266100
  • 出版日期:2024-12-10 发布日期:2024-12-31
  • 作者简介:周少龙,硕士学位。研究方向:自然语言处理、知识图谱、大模型应用等。E-mail:330783891@qq.com。

Application of long context learning in home appliance knowledge question and answer

ZHOU Shaolong1,2,3, LIU Guangtong1,2,3, DOU Fangzheng1,2,3, LIU ChaoZhen1,2,3   

  1. 1. Qingdao Haier Technology Co. Ltd. Qingdao 266100;
    2. National Engineering Research Center of Digital Home Networking Qingdao 266100;
    3. Shandong Key Laboratory of Artificial Intelligence and Nature Interaction in Smart Homes Qingdao 266100
  • Online:2024-12-10 Published:2024-12-31

摘要: 随着大型语言模型能力的增强,如何处理长文本理解已成为面临的关键问题。目前有减少输入模型的长度,或者扩展模型的上下文窗口大小等策略来缓解长文本理解的难度,然而,在特定知识领域,使用小规模大语言模型很难在不进行微调的情况下对长文本的理解达到预期结果,容易造成幻觉答案、缺失关键信息等问题。为了解决这些问题,研究提出了一种不区分上下文位置信息的模型微调策略,采用高效参数微调小模型的方式适应家电领域中的专业术语和概念,捕捉上下文信息,使长文本中重要信息能够聚合。最后,通过在家电领域的说明书数据集上验证,使用检索增强生成技术召回的长文本内容对微调方法进行了评估,该策略比基线测试性能准确率提高了5%左右。

关键词: 领域知识, 上下文学习, 高效参数微调, 大模型

Abstract: With the enhancement of large-scale language model capabilities, how to handle long text understanding has become a key issue facing us. At present, there are strategies such as reducing the length of input or expanding the attention window size of models to alleviate the difficulty of understanding long texts. However, in specific knowledge domains, it is difficult to achieve the expected results of understanding long texts without fine-tuning using domain-specific data, which can easily lead to problems such as illusionary answers and missing key information. In order to address these issues, a model fine-tuning strategy that enhances the capture of contextual location information has been proposed, which uses efficient parameter fine-tuning to more accurately capture professional terms and concepts in the home appliance field, aggregating important details from long texts. Finally, by validating on the instruction manual dataset in the home appliance field, the fine-tuning method was evaluated using retrieval-enhanced generation technology for its ability to understand and generate long text content. This strategy improved accuracy by about 5% compared to baseline testing.

Key words: Domain knowledge, Contextual learning, Efficient parameter fine-tuning, Large model

中图分类号: