家电科技 ›› 2025, Vol. 0 ›› Issue (zk): 255-258.doi: 10.19784/j.cnki.issn1672-0172.2025.99.053

• 第二部分 制冷与空调 • 上一篇    下一篇

基于人体热舒适度的空调温湿度AI同控技术研究

曹代华1,2, 石永杰1,2, 任飞1,2, 李云涛1,2, 甘超1,2, 杨引1,2   

  1. 1.长虹美菱股份有限公司 安徽合肥 230601;
    2.四川虹美智能科技有限公司 四川绵阳 621000
  • 发布日期:2025-12-30
  • 通讯作者: 石永杰,E-mail:yongjie.shi@changhong.com。
  • 作者简介:曹代华,本科学历,研究方向:人工智能技术、大数据分析、智能家电等。地址:四川省绵阳市涪城区四川虹美智能科技有限公司。E-mail:daihua.cao@changhong.com。

Research on AI-based air conditioning temperature and humidity control technology based on human thermal comfort

CAO Daihua1,2, SHI Yongjie1,2, REN Fei1,2, LI Yuntao1,2, GAN Chao1,2, YANG Yin1,2   

  1. 1. Changhong Meiling Co., Ltd. Hefei 230601;
    2. Sichuan Hongmei Intelligent Technology Co., Ltd. Mianyang 621000
  • Published:2025-12-30

摘要: 人体热舒适度受环境温度、湿度等多种因素影响。目前市场上的空调主要以温度控制为主,很少会对温湿度同时控制。为此分析了人体热舒适度的主要影响因素与空调温湿度控制技术原理,提取稳态运行下的空调历史数据,通过BP神经网络模型建立室内外温湿度与压缩机频率、内风机转速之间的映射关系,在保证人体热舒适度的同时选择最优能耗的温湿度控制组合,对目标温湿度进行实时控制。实验结果表明,在保证人体热舒适度相同的状态下,对室内温湿度同时寻优控制最高可以节省空调12.3%的能耗,对基于大数据的热舒适度控制空调系统开发起到了指导作用。

关键词: 热舒适度, 温湿度, 节能, 神经网络

Abstract: Human thermal comfort is influenced by various factors such as environmental temperature and humidity. Currently, most air conditioners on the market primarily focus on temperature control, with few systems capable of simultaneously controlling both temperature and humidity. To address this, analyzed the primary factors influencing human thermal comfort and the principles of air conditioner temperature and humidity control technology. Historical data from air conditioners operating in steady-state conditions were extracted, and a BP neural network model was used to establish the mapping relationship between indoor and outdoor temperature and humidity and compressor frequency and indoor fan speed. Enabled the selection of the optimal temperature and humidity control combination that ensures human thermal comfort while minimizing energy consumption, thereby enabling real-time control of target temperature and humidity levels. Experimental results show that, while maintaining the same level of human thermal comfort, simultaneous optimization control of indoor temperature and humidity can reduce air conditioner energy consumption by up to 12.3%. Provides guidance for the development of air conditioning systems based on big data for thermal comfort control.

Key words: Thermal comfort, Temperature and humidity, Energy saving, Neural network

中图分类号: