Journal of Appliance Science & Technology ›› 2022, Vol. 0 ›› Issue (4): 50-57.doi: 10.19784/j.cnki.issn1672-0172.2022.04.008
• Articles • Previous Articles Next Articles
ZHAO Yang1, ZHANG Ziqi1, WANG Chao2, SHI Liming2, YANG Qiaohui1
Online:
2022-08-01
Published:
2022-08-18
CLC Number:
ZHAO Yang, ZHANG Ziqi, WANG Chao, SHI Liming, YANG Qiaohui. Research progress on valve plate failure prevention technology of small refrigeration compressor[J]. Journal of Appliance Science & Technology, 2022, 0(4): 50-57.
[1] 中国制冷空调工业协会, 产业在线. 2021年中国制冷空调产业发展白皮书[R]. 2022-03. [2] 沈庆根. 设备故障诊断[M]. 北京: 化学工业出版社, 2007: 189. [3] 董春玲. 往复压缩机气阀故障机理研究[J]. 设备管理与维修, 2022(04): 96-98. [4] 刘江. 往复压缩机气阀失效规律及机理研究[J]. 压缩机技术, 2020(05): 42-45+28. [5] 李庆. 往复式压缩机气阀阀片的故障分析与诊断[D]. 北京: 北京化工大学, 2008. [6] 慕光宇. 压缩机舌簧阀动力学模型及其内流场特性研究[D]. 大连: 大连交通大学, 2019. [7] 韩宝坤, 张冬鸣, 张国伟, 田志远, 孙晓东. 基于流固耦合法的往复压缩机吸气阀流场特性研究[J]. 流体机械, 2021, 49(05): 47-53. [8] 梁晓瑜, 毛君, 王鑫. 高压工质冲击下压缩机吸气阀紊动射流形态模拟[J]. 机械设计, 2022, 39(02): 18-23. [9] 江志农, 王隽妍, 张进杰, 李磊, 孙旭, 王瑶. 往复压缩机流量调节装置不同运动规律下三维流场仿真研究[J]. 流体机械, 2022, 50(01): 29-36. [10] 王枫, 尚浩田, 米小珍, 谭良. 基于CFD的舌簧排气阀流动特性研究[J]. 制冷学报, 2016, 37(02): 38-45. [11] 邓文娟, 张英莉, 丁佳男, 巴德纯. 基于CFD的滚动转子压缩机排气阀片性能分析[J].东北大学学报(自然科学版), 2020, 41(12): 1754-1759. [12] 郑星炜, 黄刚, 郑立宇. 往复式压缩机吸排气阀组流固耦合仿真研究[J]. 家电科技, 2022(02): 82-86. [13] 王俞. 小型全封闭压缩机阀片动态特性与应力疲劳研究[D]. 杭州: 浙江工业大学, 2020. [14] 郑传祥, 李蓉, 王亮, 魏宗新, 刘远峰. 小型制冷压缩机吸气阀的流固耦合分析和优化研究[J]. 工程设计学报, 2014, 21(01): 68-74. [15] 慕光宇, 王枫, 米小珍. 压缩机舌簧排气阀运动模型对比及动态特性影响因素分析[J].西安交通大学学报, 2017, 51(09): 69-76. [16] 慕光宇, 米小珍, 王枫. 黏滞作用下压缩机舌簧阀建模与运动过程[J]. 大连海事大学学报, 2018, 44(04): 115-120+126. [17] 谭琴, 张金圈, 廖雪丽, 冯全科. 滚动转子压缩机工况对排气阀运动规律影响研究[J]. 流体机械, 2014, 42(09): 14-18. [18] 李诚展, 李建国, 孙建, 蔡京辉. 制冷用无油线性压缩机中排气阀动态特性实验研究[J].低温工程, 2018(05): 13-17+32. [19] 王小燕. 涡旋压缩机簧片阀的有限元分析和实验研究[D]. 苏州: 苏州大学, 2016. [20] 郑诏星, 王磊, 江志农, 王瑶, 张进杰. 往复压缩机网状阀阀片运动规律及应力分析[J].流体机械, 2018, 46(03): 7-12. [21] 门连国, 杨洋. 基于数学模型对压缩机网状阀经济性及可靠性的研究[J]. 压缩机技术, 2016(02): 16-20. [22] 张师帅, 杨山坡, 匡海云, 王钰. 基于流固声耦合的冰箱压缩机吸气阀组综合性能研究[J]. 制冷与空调, 2015, 15(12): 82-87+61. [23] Yu Wang, Chuang Xue, Jianmei Feng, Xueyuan Peng.Experimental investigation on valve impact velocity and inclining motion of a reciprocating compressor[J]. Applied thermal engineering: Design, processes, equipment, economics, 2013, 61(02): 149-156. [24] YUAN MA, ZHILONG HE, XUEYUAN PENG, et al.Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle[J]. Applied thermal engineering: Design, processes, equipment, economics, 2012(32): 13-21. [25] Yongseok Lee, Seungkil Son.Study on the Fatigue Strength of a Suction Flapper Valve used in a High Efficient Reciprocating Compressor[A]//International compressor engineering conference at purdue[C], 2008 ICECP, 2008. [26] E H MACHU.Valve dynamics of reciprocating compressor valves with more than one degree of freedom[A]//Compressors and their Systems[C], 2001. [27] JIAQI JIN, GUOLIANG SUI, HONGTAO ZHANG.The research and analysis on valve reliability of reciprocating Compressor[A]//Advanced Designs and Researches for Manufacturing. Part 1: Trans Tech Publications[C], 2012: 753-757. [28] Xiaoling Yu, Qin Tan, Yumei Ren.Numerical study of the reed valve impact in the rotary compressor by FSI model[A]//International Conference on Applied Energy[C], 2017. [29] YU CHEN, NILS P. HALM, ECKHARD A.GROLL, et al. Mathematical modeling of scroll compressors-Part I: compression process modeling[J]. International Journal of Refrigeration, 2002, 25(06): 731-750. [30] YU CHEN, NILS, P. HALM, et al.Mathematical modeling of scroll compressors-Part II: overall scroll compressor modeling[J]. International Journal of Refrigeration, 2002, 25(06): 751-764. [31] Hyeongsik Kim, Jaewoo Ahn, Donghyun Kim.Fluid structure interaction and impact analyses of reciprocating compressor discharge valves[A]//International Compressor Engineering Conference[C]. West Lafayette, IN, USA: Purdue University, 2008: 1112. [32] 王枫, 彭学院. 压缩机舌簧阀组的公理化设计[J]. 流体机械, 2011, 39(06): 38-42+12. [33] 胡远培, 徐嘉, 杨欧翔, 张晓颖, 高津. 结构参数对压缩机阀片冲击特性的影响研究[J].冷藏技术, 2021, 44(03): 55-59. [34] 伦成钢, 薛余刚. 直流调速滚动转子式压缩机气阀结构优化设计[J]. 制冷与空调, 2019, 19(02): 89-91. [35] 吉江, 丁磊, 刘少帅, 等. 直流线性压缩机吸气簧片阀运动特性数值分析[J]. 流体机械, 2021, 49(07): 38-44. [36] 吴斌, 张勤建, 姚辉军, 等. 不同规格往复压缩机对相同阀组的兼容性研究[J]. 流体机械, 2018, 46(07): 49-53. [37] 树林, 伍永强, 广柯平, 欧胜芳. 带自弹缓冲片网状阀设计[J]. 压缩机技术, 2015(01): 27-30. [38] 孙品同, 杨虎, 于克营. 网状阀环形弹性臂刚度计算[J]. 压缩机技术, 2013(06): 36-38+43. [39] Wang Feng, Mu Guangyu, Guo Qiang.Design optimization of compressor reed valve based on axiomatic design[J]. International Journal of Refrigeration, 2016, 72: 132-139. [40] YUN KI KWON, GEON HO LEE, TAE JIN LEE.The Design of Compressor Valve to Consider the Flexibility and Reliability[A]//International Compressor Engineering Conference at Purdue[C], 2004. [41] JUNGHYOUN KIM, SEMYUNG WANG, SUNGWOO PARK, et al.Valve Dynamic Analysis of a Hermetic Reciprocating Compressor[A]//18th International Compressor Engineering Conference at Purdue. Purdue University[C], 2006: 535-544. [42] Andreas Egger, Raimund Almbauer, Lukas Dür, et al.Multi-Response optimization applied to a mechanically assisted reed valve of a hermetic reciprocating compressor[J]. International Journal of Refrigeration, 2020, 119: 119-130. [43] Jairo Aparecido Martins, Lisandro Pavio Cardoso, Jose Alfredo Fraymann.Analyses of residual stresses on stamped valves by X-ray diffraction and finite elements method[J]. Journal of Materials Processing Technology, 2006, 179(1-3): 30-35. [44] Glaeser W A. Failure mechanisms of reed valves in refrigeration compressors[J]. Wear, 1999, 225-229(04): 918-924. [45] Lajús F. C.Numerical analysis of seat impact of reed type valves[M], 2013. [46] Yu X, Tan Q, Ren Y, et al.Numerical Study of the Reed Valve Impact in the Rotary Compressor by FSI Model[J]. Energy Procedia, 2017, 105: 4890-4897. [47] 张玉龙, 段梦兰, 段礼祥, 张丛健. 基于SAX的往复压缩机气阀故障诊断[J]. 石油机械, 2018, 46(03): 78-83. [48] 丁承君, 张家梁, 冯玉伯, 王鑫. 基于PSO优化RBF神经网络的往复式压缩机故障诊断[J]. 制造业自动化, 2020, 42(06): 47-52. [49] 毛伟. 往复式压缩机气阀磨损故障特征提取的研究[J]. 流体机械, 2016, 44(06): 41-46+88. [50] 舒悦, 谢传东, 何明, 刘晓明, 刘志龙, 曹斌. 往复压缩机环状气阀振动信号的LMD故障特征提取方法研究[J]. 流体机械, 2019, 47(11): 13-18. [51] 王金东, 李颖, 赵海洋, 刘著, 高一淇. 基于VMD和改进多尺度熵的往复压缩机气阀故障诊断方法[J]. 压缩机技术, 2018(03): 1-8. [52] 魏中青, 马波, 窦远, 江志农, 马日红. 基于MLE阈值规则的小波特征提取技术在气阀故障诊断中的应用[J]. 振动与冲击, 2011, 30(01): 237-241. [53] 马海辉, 余小玲, 吕倩, 叶君超. 一维卷积神经网络在往复式压缩机气阀故障诊断中的应用[J]. 西安交通大学学报, 2022, 56(04): 101-108. [54] 谢昭灵. 基于HHT和BP神经网络的压缩机气阀故障诊断研究[D]. 成都: 电子科技大学, 2018. [55] 胡容搏. 基于LCD和MSE的往复压缩机故障诊断方法研究[D]. 大庆: 东北石油大学, 2015. [56] 张华. 基于LM-BP神经网络的多级往复式压缩机气阀故障诊断研究[D]. 上海: 东华大学, 2015. [57] 杨晓. 基于形态学分形的往复式压缩机气阀故障诊断方法[D]. 北京: 北京化工大学, 2016. [58] Qiang Qin, Zhi-Nong Jiang, Kun Feng, Wei He.A novel scheme for fault detection of reciprocating compressor valves based on basis pursuit, wave matching and support vector machine[J]. Measurement, 2012, 45(05): 897-908. [59] HOUXI CUI, LAIBIN ZHANG, RONGYU KANG, et al.Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method[J]. Journal of loss prevention in the process industries, 2009, 22(06): 864-867. [60] Y. F. WANG, X. Y. PENG.FAULT DIAGNOSIS OF RECIPROCATING COMPRESSOR VALVE USING ACOUSTIC EMISSION[C]//ASME international mechanical engineering congress and exposition, 2013(06): 101-106. [61] VAN TUNG TRAN, FAISAL ALTHOBIANI, TIEDO TINGA, et al.Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network[J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of mechanical engineering science, 2018, 232(20): 3767-3780. [62] Erich H.Machu. The two-dimensional motion of the valve plate of a reciprocating compressor valve[A]//Purdue Compressor Technology Conference[C], 1994. [63] FARZANEH-GORD MAHMOOD, KHOSHNAZAR HOSSEIN.Valve fault detection for single-stage reciprocating compressors[J]. Journal of natural gas science and engineering. 2016, 35: 1239-1248. [64] Dusan Jankov, Werner Soedel.PRESSURE SIGNATURES OF DAMAGED VALVES[C]. Purdue Compressor Technology Conference. 1988. [65] 方泽云, 戴竞雄, 陆龙富, 等. 不锈钢材质阀片的研究[A]//2008年中国家用电器技术大会论文集[C]. 2008: 210-216. [66] 梅先松, 缪德良, 赵越. 压缩机用阀片钢使用中应注意的问题[J]. 流体机械, 2001, 29(04): 44-45. [67] 付玉彬, 单向东, 宰学荣. 冰箱压缩机阀片断裂失效分析[J]. 材料开发与应用, 2008, 23(05): 71-76. [68] Yuan Ma, Yanan Gan, Xueyuan Peng, Ziwen Xing.Experimental Investigation of the Dynamics of Self-acting Valve in a Reciprocating Compressor for Transcritical CO2 Refrigeration[A]//International compressor engineering conference at purdue[C], 2008 ICECP, 2008. [69] GUOCAI CHAI, GUSTAF ZETTERHOLM, BERTIL WALDEN. FLAPPER VALVE STEELS WITH HIGH PERFORMANCE[A]//2004 International Compressor Engineering Conference at Purdue (2004 ICECP)[C], 2004(02): 319-326. [70] A.CAN ALTUNLU, ISMAIL LAZOGLU, EMRE OGUZ, et al. Impact Fatigue Characteristics of Valve Leaves for Small Hermetic Reciprocating Compressors[A]//Proceedings of the 2010 international compressor engineering conference at Purdue[C], 2010: 1-7. [71] MICHELE LIBRALATO, ANDREA CONTARINI. IMPACT FATIGUE ON SUCTION VALVE REED: NEW EXPERIMENTAL APPROACH[C]//2004 International Compressor Engineering Conference at Purdue (2004 ICECP), 2004(01): 276-282. [72] 黄波, 孟祥麒. 基于空调全年能源消耗效率工况的滚动转子式压缩机变刚度排气阀设计及实验研究[J]. 制冷技术, 2020, 40(05): 47-52. [73] 李华军, 罗祥胜, 戴竟雄, 孟碧光. PEEK材料应用于制冷压缩机上的研究[J]. 家电科技, 2020(zk): 61-63. [74] 章国江, 郑传祥, 刘远峰, 朱谷昌, 吴嘉懿. 碳纤维复合材料小型压缩机阀片性能试验研究[J]. 高科技纤维与应用, 2016, 41(06): 53-56. [75] D. ARTNER.Thermoplastics in reciprocating compressor valves. part Ⅰ-influence on efficiency and reliability[A]//International Conference on Compressors and their Systems[C], 1999: 375-385. [76] B. J. SPIEGL, B. A. MLEKUSCH, D. ARTNER.Thermoplastics in reciprocating compressor valves. part Ⅱ-stress calculations in short-fibre reinforced thermoplastic (SFRTP) compressor valve plates[A]//International Conference on Compressors and their Systems[C], 1999: 387-398. [77] 贺运初, 潘树林, 邹鹤. 阀片材料为聚醚醚酮的压缩机气阀设计与应用[J]. 压缩机技术, 2011(03): 21-24. [78] 郭强, 田爱国, 陈志刚. 高性能工程塑料聚醚醚酮特性和应用的研究[J]. 工程塑料应用, 2001(12): 19-21. [79] 王永恒. 聚醚醚酮(PEEK)及在往复压缩机中的应用[J]. 甘肃科技, 2009, 25(15): 59-60+10. [80] 任峰岩, 许磊, 王有超, 赵林伟, 米国发. 高性能空调阀片钢的热处理工艺及性能研究[J]. 热加工工艺, 2019, 48(18): 126-129+132. [81] 刘景岩. 阀片热处理工艺研究[J]. 中国新技术新产品, 2016(17): 90-91. [82] 肖鹏, 张勤建, 杨骅, 朱雅君. 滚抛工序对冰箱压缩机阀片性能的影响研究[J]. 日用电器, 2019(12): 43-46+61. [83] 吴蒙华, 魏小鹏, 王智明, 戴连森, 隋敬春. 活塞式气体压缩机阀片的化学镀Ni-P合金工艺研究[J]. 机械工程材料, 2003(04): 35-37. [84] 王金东, 李颖, 夏法锋. 脉冲电流密度对Ni-SiC镀层微观结构和显微硬度的影响[J]. 功能材料, 2014, 45(18): 18096-18098. |
[1] | ZHANG Dejin, JIANG Bo, QU Xiaohua. Research on vibration and noise optimization of inverter air conditioner compressor motor [J]. Journal of Appliance Science & Technology, 2022, 0(4): 16-19. |
[2] | MEI Changyun, CHEN Daogen, CHANG Jianhu, ZHANG Anzhou, LIAO Jiansheng. VTF simulation analysis and morphology optimization of piston compressor housing based on OptiStruct [J]. Journal of Appliance Science & Technology, 2022, 0(4): 30-35. |
[3] | CHEN Gang, ZHU Jinjiang, MENG Biguang, QIN Zongmin, LI Jingrui. Study on the factors affecting the characteristics of compressor suction muffler [J]. Journal of Appliance Science & Technology, 2022, 0(4): 36-41. |
[4] | HAN Chong, CHANG Xuesong, ZHANG Pengge, LIU Zhaoyang, REN Dawei, BAI Qing. Performance analysis and application of EPP cushioning material in packaging of household appliances [J]. Journal of Appliance Science & Technology, 2022, 0(4): 112-115. |
[5] | ZHENG Xingwei, HUANG Gang, ZHENG Liyu. Fluid structure interaction simulation study of the valve system of hermetic reciprocating compressor [J]. Journal of Appliance Science & Technology, 2022, 0(2): 82-86. |
[6] | LI Zheng, WANG Haijun. Test and simulation of fundamental frequency vibration of rotary compressor [J]. Journal of Appliance Science & Technology, 2022, 0(2): 92-97. |
[7] | JIANG Bo, LI Yang, CAO Hongjun. Study of the oil pool migration characteristics in a horizontal rolling piston compressor [J]. Journal of Appliance Science & Technology, 2022, 0(2): 102-105. |
[8] | TAN Shupeng, GUO Lijuan, YE Rongjun, ZHANG Su. Analysis and optimization of high frequency noise of household inverter air conditioner compressor [J]. Journal of Appliance Science & Technology, 2022, 0(1): 48-50. |
[9] | YANG Peng, ZHANG Kui. Experimental study on the influence on noise and energy consumption of refrigerator without bottom condenser by sealing compressor cabin [J]. Journal of Appliance Science & Technology, 2022, 0(1): 91-95. |
[10] | LU Yaoshan, LIAO Siqing, ZENG Linghua. Experimental study on the relationship between oil superheat and viscosity of air conditioning compressor [J]. Journal of Appliance Science & Technology, 2022, 0(1): 101-103. |
[11] | LI Huajun, DAI Jingxiong, LUO Xiangsheng, HUANG Zhonglei. A study on the suction muffler of a high efficiency and noise reduction refrigeration compressor [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 100-103. |
[12] | WANG Shichao, REN Xinjie, LI Tailong. A novel flux weakening method and design for an electrolytic capacitor-less inverter [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 111-115. |
[13] | LIU Xianbao, CAI Xiangzhou, LIU Yang, WANG Jianfei, YU Shuisheng. Buffer material selection and structure design of electric water heater [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 138-141. |
[14] | QIN Daoqian, ZOU Hong, HU Liang, GAN Haifeng. Application research of roller rotary compressor on slush dispenser [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 209-211. |
[15] | WANG Yaoyao, SUN Bin, SHI Yinghui, WANG Guoqing. Research and application on the actual working condition of air-cooled refrigerator and the improvement of compressor efficiency under this working condition [J]. Journal of Appliance Science & Technology, 2021, 0(zk): 217-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||