[1] Kalnæs SE, Jelle BP.Phase change materials and products for building applications: a state-of-the-art review and future research opportunities[J]. Energy Build 2015; 94: 150-76. [2] Jensen SØ, Marszal-Pomianowska A, Lollini R, Pasut W, Knotzer A, Engelmann P, Stafford A, Reynders G.IEA EBC annex 67 energy flexible buildings[J]. Energy Build 2017; 155: 25-34. [3] Kim K, Kim M H, Kim D R, et al.Thermal performance of microchannel heat exchangers according to the design parameters under the frosting conditions[J]. International Journal of Heat & Mass Transfer, 2014, 71(1):626-632. [4] Kim M H, Kim H, Kim D R, et al.A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions[J]. Energy Conversion & Management, 2016, 110:494-500. [5] Cláudio Melo, Fernando T. Knabben, Paula V.Pereira. An experimental study on defrost heaters applied to frost-free household refrigerators[J]. Applied Thermal Engineering, 2013, 51(1-2):239-245. [6] Ooi K T, Wong T N.A computer simulation of a rotary compressor for household refrigerators[J]. Applied Thermal Engineering, 1997, 17(1):65-78. [7] Park Y C .Transient analysis of a variable speed rotary compressor[J]. Energy Conversion and Management, 2010, 51(2):277-287. [8] 马一太, 刘忠彦, 李敏霞. 容积式制冷压缩机电效率分析[J]. 制冷学报, 2013, 34(3):1-7. [9] Bertsch SS, Groll EA.Air source heat pump for northern climates part I: simulation of different heat pump cycles [J]. In: International refrigeration and air conditioning conference, WestLafayette, July 17-20; 2006. [10] 罗泽良. 空气源热泵压缩机电机改善分析[J]. 制冷与空调, 2015, 15(5):26-28. [11] 郑贤德, 等. 制冷原理与装置[M]. 北京:机械工业出版社. 2013. [12] Gu Z, Liu H, Li Y .Thermal energy recovery of air conditioning system - Heat recovery system calculation and phase change materials development[J]. Applied Thermal Engineering, 2004, 24(17-18): 2511-2526. [13] 王博雅, 韩志涛, 刘曙光. 相变蓄热式空调冷凝热回收系统探讨[J]. 山西建筑, 2018(11). [14] 段未, 马国远, 周峰. 空调冷凝热回收用热管热水器及其经济性分析[J]. 建筑节能, 2015(7):7-12. [15] Bansal P., Fothergill D., Fernandes R. (2010). Thermal Analysis of the Defrost cycle in a Domestic Freezer[J]. International Journal of Refrigeration, 33, 589-599. [16] Zhongbao Liu, Fei Zhao, Lingfei Zhan, et al.Performance of bypass cycle defrosting system using ompressor casing thermal storage for air-cooled household refrigerators[J]. Applied Thermal Engineering, 2018, 130: 1215-1223. [17] 刘梓玫, 刘鹏聪, 范英杰. 基于压缩机壳体蓄热的恒温静水解冻装置[C]. 武汉:2018全国大学生节能减排科技竞赛. 2018. [18] 杨轩, 方钰文, 高敏. 基于压缩机壳体蓄热的恒温空气解冻装置[C]. 武汉:2018全国大学生节能减排科技竞赛. 2018. [19] Long Z, Jiankai D, Yiqiang J, et al.A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump[J]. Applied Energy, 2014, 133:101-111. [20] Zhongbao Liu, Pengyan Fan, Qinghua Wang, et al.Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage[J]. Applied Thermal Engineering, 2018, 128: 1420-1429. [21] Huang B, Jian Q, Luo L, et al.Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell[J]. Energy Conversion and Management, 2017, 138:38-44. [22] 范学慧, 李爱民. 家用空调冷凝热的回收利用[J]. 时代农机, 2018(45): 3. [23] 白羽. 冷凝热释放对环境及自然通风的影响研究[D]. 湖南: 湖南大学, 2007. [24] Liu Z, Li A, Wang Q, et al.Experimental study on a new type of thermal storage defrosting system for frost-free household refrigerators[J]. Applied Thermal Engineering, 2017,118:256-265. [25] 梅宝军. 新型蓄热型冷凝器及其在家用冰箱中的应用研究[D]. 合肥: 中国科学技术大学, 2011. [26] 田浩. 多联机空气源热泵相变蓄能除霜系统实验研究[D]. 黑龙江: 哈尔滨工业大学, 2014. [27] 卜燕, 戴辉, 樊天钰, et al.家用空调余热的回收利用研究[J]. 科技创新导报, 2012(36):89-90. [28] D. Verdier, A. Ferrière, Q. Falcoz, F. Siros, R. Couturier, Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver [J]. Energy Procedia 49 (2014) 1044-1053 [29] L. Nkhonjera, T. Bello-Ochende, G. John, C.K. King’ondu.A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage[J]. Renew. Sustain. Energy Rev. 75(2017) 157-167 [30] Chen J, Zhang P.Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media[J]. Appl Energy 2017; 190: 868-79. [31] Kawanami T, Togashi K, Fumoto K, Hirano S, Zhang P, Shirai K, et al.Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media[J]. Energy 2016; 117: 562-8. [32] 徐治国, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术. 2014.5: 3.3. [33] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al., State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renew. Sustain. Energy Rev. 14(2010) 31-55. [34] N.R. Jankowski, F.P. McCluskey, A review of phase change materials for vehicle component thermal buffering [J], Appl. Energy 113 (2014) 1525-1561. [35] 张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13): 26-32. [36] B. Xu, P. Li, C. Chan, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments [J], Appl. Energy 160 (2015) 286-307. [37] H. Ke, Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J], Appl. Therm. Eng. 113(2017) 1319-1331. [38] 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6):1723-1728. [39] 张红瑞. 空调废热回收热泵关键技术的研究[D]. 山东建筑大学, 2010. [40] 谢豪, 马素霞, 尹建国, 等. 相变蓄热蒸发型空气源热泵性能优化实验研究[J]. 太阳能学报, 2017, 38(8):2253-2257. |