家电科技 ›› 2025, Vol. 0 ›› Issue (3): 76-79.doi: 10.19784/j.cnki.issn1672-0172.2025.03.012

• 论文 • 上一篇    下一篇

基于SSA-SVM的冰箱压缩机声信号故障诊断方法研究

黄御封, 程辉, 徐永康, 李语亭, 江俊   

  1. 合肥美的电冰箱有限公司 安徽合肥 230601
  • 发布日期:2025-08-19
  • 作者简介:黄御封,硕士学位。研究方向:旋转机械故障诊断。地址:安徽省合肥市合肥美的电冰箱有限公司。E-mail:huangyf215@midea.com。

Research on fault diagnosis method for refrigerator compressor acoustic signals based on SSA-SVM

HUANG Yufeng, CHEN Hui, XU Yongkang, LI Yuting, JIANG Jun   

  1. Hefei Midea Refrigerator Co., Ltd. Hefei 230601
  • Published:2025-08-19

摘要: 针对冰箱压缩机声信号缺陷辨识精度受限的挑战,构建了基于麻雀搜索算法和支持向量机(SSA-SVM)的故障诊断模型。在方法实现层面,首先对原始声信号进行小波阈值去噪预处理以消除环境噪声干扰,继而通过时频域联合分析方法提取多维特征集作为SVM模型的输入参数。核心创新点在于引入SSA智能优化算法,建立参数自适应调整机制,有效获取最优惩罚系数与核函数参数组合。以人工头采集的数据开展了研究,通过对多工况数据的实证分析表明,此SSA-SVM模型可实现97.5%的平均故障识别准确率,且较对比方法具备更快的计算速度和更高的稳定性。

关键词: 压缩机, 麻雀搜索算法, 支持向量机, 故障诊断

Abstract: In response to the issue of low accuracy in fault identification of refrigerator compressor acoustic signals, a fault diagnosis method for refrigerator acoustic signals based on the Sparrow Search Algorithm and Support Vector Machine (SSA-SVM) is proposed. Firstly, the acoustic signal data of the refrigerator compressor is denoised using wavelet transform; then, the time-domain and frequency-domain features are extracted to form feature vectors as the input for the SVM. Finally, the SSA is used to adaptively search for the key parameters of the SVM, namely the penalty factor and the free parameter, to achieve fault diagnosis of the refrigerator compressor acoustic signals. Using data collected by an artificial head conducted the study, the experimental results show that the proposed method can find the optimal parameters for the SVM, achieving a diagnostic accuracy of 97.5% for the refrigerator compressor fault acoustic signals, and it outperforms other comparison methods in terms of computational speed and stability.

Key words: Compressor, SSA, SVM, Fault diagnosis

中图分类号: