家电科技 ›› 2024, Vol. 0 ›› Issue (5): 42-48.doi: 10.19784/j.cnki.issn1672-0172.2024.05.005
周宏亮, 宣卫豪, 姬安生, 蔡元浩
出版日期:
2024-10-01
发布日期:
2024-10-16
通讯作者:
宣卫豪,xuanwh@midea.com。
作者简介:
周宏亮,博士学位。研究方向:家用空调器新型制冷技术研究。地址:广东省佛山市顺德区北滘镇林港路22号美的家用空调事业部。E-mail:hongliang.zhou@midea.com。
基金资助:
ZHOU Hongliang, XUAN Weihao, JI Ansheng, CAI Yuanhao
Online:
2024-10-01
Published:
2024-10-16
摘要: 在双碳战略背景下,国际、国内环保政策法规要求逐步削减含氟制冷剂配额,针对环保制冷剂替代的研究迫在眉睫。水作为纯天然工质(R718),可以做到制冷剂全生命周期近零碳排放,就环保性和安全性角度而言是一种理想的制冷剂,而且具有良好的制冷能效表现。相关报道显示,R718压缩循环制冷系统能效水平与R134a、R290等制冷剂相当。在水蒸气压缩循环制冷技术研究和推广应用上,丹麦、德国、日本、美国等发达国家走在世界前列,而我国目前还在理论研究阶段,水蒸气压缩循环制冷装置还未在中国有实际应用报道。随着我国暖通空调行业的蓬勃发展以及HFC制冷剂的不断受限,环保性、安全性及性能表现良好的R718制冷剂将具有广阔的发展前景。
中图分类号:
周宏亮, 宣卫豪, 姬安生, 蔡元浩. 水蒸气压缩循环制冷研究现状与展望[J]. 家电科技, 2024, 0(5): 42-48.
ZHOU Hongliang, XUAN Weihao, JI Ansheng, CAI Yuanhao. Research status and prospect of water vapor compression cycle refrigeration[J]. Journal of Appliance Science & Technology, 2024, 0(5): 42-48.
[1] | 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[M]中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[M]. 北京: 人民出版社, 2021. |
[2] | 张朝晖, 陈敬良, 高钰, 等.《蒙特利尔议定书》基加利修正案对制冷空调行业的影响分析[J]. 制冷与空调, 2017, 17(01): 1-7+15. |
[3] | 邓雅静. “碳中和”下,HFCs成为家电行业的减排关键[J]. 电器, 2021(07): 22-23. |
[4] | 谢郦卿, 李爱国, 黄之敏. 低GWP制冷剂在热泵行业的应用分析[J]. 家电科技, 2021(01): 76-81. |
[5] | 苏亮. 制冷剂替代势在必行 R290空调未到推广时[J]. 家电科技, 2010(11): 26. |
[6] | Lorentzen G.The use of natural refrigerants: a complete solution to the CFC/HCFC predicament[J]. International Journal of Refrigeration, 1995, 18(03): 190-197. |
[7] | 马一太, 王景刚, 魏东. 自然工质在制冷空调领域里的应用分析[J]. 制冷学报, 2002(01): 1-5. |
[8] | 黄逊青. 家用空调制冷系统使用天然制冷剂的前景[J]. 家电科技, 2008(13): 31-33. |
[9] | 吴迪, 胡斌, 王如竹, 等. 水制冷剂及水蒸气压缩机研究现状和展望[J]. 化工学报, 2017, 68(08): 2959-2968. |
[10] | 马一太, 魏东, 王景刚. 国内外自然工质研究现状与发展趋势[J]. 暖通空调, 2003(01): 41-46. |
[11] | 马一太, 王派, 李敏霞, 等. 温室效应及第四代制冷工质[J]. 制冷技术, 2017, 37(05): 8-13. |
[12] | Orshoven D V, Klein S A, Beckman W A.An Investigation of Water as a Refrigerant[J]. Journal of Energy Resources Technology, 1993, 115(04): 257-263. |
[13] | 袁卫星, 袁修干, 于志强. 水蒸汽压缩式制冷机性能研究[J]. 制冷学报, 2003(03): 16-19. |
[14] | Wobst E, Kalitzin N, Apley R.Turbo water chiller with water as refrigerant[C]// International Compressor Engineering Conference. USA: Purdue University, 2004. |
[15] | Kilicarslan A, Müller N.COPs of R718 in comparison with other modern refrigerants[C]// First Cappadocia International Mechanical Engineering Symposium, Cappadocia, Turkey: 2004: 14-16. |
[16] | Kilicarslan A, Müller N.A comparative study of water as a refrigerant with some current refrigerants[J]. International journal of energy research, 2005, 29(11): 947-959. |
[17] | Lachner Jr B F, Nellis G F, Reindl D T. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability[R].Air-Conditioning and Refrigeration Technology Institute (US), 2004. |
[18] | Lachner Jr B F, Nellis G F, Reindl D T. The commercial feasibility of the use of water vapor as a refrigerant[J]. International journal of refrigeration, 2007, 30(04): 699-708. |
[19] | Šarevski V N, Šarevski M N.Energy efficiency of the thermocompression refrigerating and heat pump systems[J]. International journal of refrigeration, 2012, 35(04): 1067-1079. |
[20] | Šarevski M N, Šarevski V N.Characteristics of water vapor turbocompressors applied in refrigeration and heat pump systems[J]. International journal of refrigeration, 2012, 35(05): 1484-1496. |
[21] | Šarevski M N, Šarevski V N.Preliminary study of a novel R718 refrigeration cycle with single stage centrifugal compressor and two-phase ejector[J]. International journal of refrigeration, 2014, 40: 435-449. |
[22] | Šarevski M N, Šarevski V N.Water (R718) turbo compressor and ejector refrigeration/heat pump technology[M]. Butterworth-Heinemann, 2016. |
[23] | Šarevski M N, Šarevski V N.Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression[J]. Applied Thermal Engineering, 2017, 117: 355-365. |
[24] | 俞丽华, 许树学, 马国远. 中间补气对罗茨式水蒸气制冷压缩机工作性能的影响[J]. 制冷与空调(四川), 2016, 30(04): 502-507. |
[25] | 裴雪岛, 马国远, 赵博. R718在制冷行业的应用[J]. 科技信息, 2010(36): 700-701. |
[26] | Hu B, Wu D, Wang R Z.Water vapor compression and its various applications[J]. Renewable and sustainable energy reviews, 2018, 98: 92-107. |
[27] | Wu D, Hu B, Wang R Z, et al.The performance comparison of high temperature heat pump among R718 and other refrigerants[J]. Renewable energy, 2020, 154: 715-722. |
[28] | Ophir A.Mechanical heat pumps using water as refrigerant for ice production and air conditioning[J]. IDEA 99th Annual Converence & Trade Show, Orlando, Florida, 2008. |
[29] | 任金禄. 水制冷剂压缩式制冷机[J]. 制冷与空调, 2008(zk): 53-59. |
[30] | 周子成. 水作为制冷剂的透平冷水机组研究现状(二)[J]. 制冷, 2012, 31(02): 26-33. |
[31] | Hanslik F, Suess J.Water as a refrigerant in centrifugal compressor cooling systems for industrial applications[A]// Advanced Cooling Technologies and Applications[M]. London, UK: IntechOpen, 2018. |
[32] | Shoyama T, Kawano B, Ogata T, et al.Centrifugal turbo chiller using water as refrigerant and lubricant[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236(01): 71-78. |
[33] | Muller N.Design of compressor impellers for water as a refrigerant[J]. ASHRAE Transactions, 2001, 107(02): 214-222. |
[34] | Amibe D A, Li Q, Muller N.Multi Stage Variable Speed Turbo Compressor for Enhancing Seasonal Energy Efficiency Ratio of Air Conditioners Using R718 as Refrigerant[C]// Asme Turbo Expo: Power for Land, Sea, & Air. 2010: 349-355. |
[35] | Li Q, Piechna J, Muller N.Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant[J]. Energy, 2011, 36(05): 2773-2781. |
[36] | Li Q, Piechna J, Muller N.Design of a novel axial impeller as a part of counter-rotating axial compressor to compress water vapor as refrigerant[J]. Applied Energy, 2011, 88(09): 3156-3168. |
[37] | Li Q, Piechna J, Norbert Müller.Thermodynamic potential of using a counter rotating novel axial impeller to compress water vapor as refrigerant[J]. International Journal of Refrigeration, 2011, 34(05): 1286-1295. |
[38] | Patil M, Mueller N.Structural analysis of continuous fiber wound composite impellers of a multistage high-speed counter rotating axial compressor for compressing water vapor (R-718) as refrigerant using Finite Element Analysis[J]. Materials & Design, 2013, 50(09): 683-693. |
[39] | Akbari P, Nalim R, Mueller N.A Review of Wave Rotor Technology and Its Applications[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(04): 81-103. |
[40] | Akbari P, Mueller N.Wave rotor research program at michigan state university[C]// 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2005: 3844. |
[41] | Kharazi A A, Akbari P, Müller N.Preliminary study of a novel R718 turbo-compression cycle using a 3-port condensing wave rotor[C]// Turbo Expo: Power for Land, Sea, and Air. 2004, 41723: 381-388. |
[42] | Kharazi A A, Akbari P, Müller N.Performance Benefits of R718 Turbo-Compression Cycle Using 3-Port Condensing Wave Rotors[C]// ASME International Mechanical Engineering Congress and Exposition. 2004, 47179: 167-176. |
[43] | Kharazi A, Akbari P, Müller N.An application of wave rotor technology for performance enhancement of R718 refrigeration cycles[C]// 2nd International Energy Conversion Engineering Conference. 2004: 5636. |
[44] | Kharazi A A, Akbari P, Müller N.Implementation of 3-port condensing wave rotors in R718 cycles[J]. Journal of Energy Resources Technology, 2006, 128: 325-334. |
[45] | Albring P, Honke M.Ice-making and ice storage, with water as refrigerant[C]// 23rd IIR International Congress of Refrigeration. 2011: 21-26. |
[46] | Honke M, Safarik M, Herzog R.R718 turbo chillers and vacuum ice generation-Two applications of a new generation of high speed, high capacity R718 centrifugal compressors[C]// 24th IIR International Congress of Refrigeration. 2015: 16-22. |
[47] | MADSBOLL H.New multistage axial compressor and chiller development for water as refrigerant[C]// MADSBOLL H. 7th International Conference on Compressors and Their Systems 2011. London, United Kingdom: Woodhead Publishing Limited, 2011: 39-49. |
[48] | 胡斌, 吴迪, 姜佳彤, 等. 水蒸气超高温热泵系统的实验研究[J]. 工程热物理学报, 2021, 42(04): 833-840. |
[49] | 吴迪, 胡斌, 王如竹, 等. 采用自然工质水的高温热泵系统性能分析[J]. 化工学报, 2018, 69(zk2): 95-100. |
[50] | 于志强, 吴华根, 刘昌丰, 等. 水蒸气螺杆压缩机[DB/OL]. 冰轮环境技术股份有限公司, 西安交通大学. 鉴定单位: 中国机械工业联合会. 2018-10-21 |
[1] | 曹浩东, 姚克文, 周峰. 使用电辅助加热对房间空调器能耗及能效的影响——以南京典型居住建筑为例[J]. 家电科技, 2024, 0(zk): 166-169. |
[2] | 李庆坚. 小多联空调系统高效智能的优化方案与实践[J]. 家电科技, 2024, 0(zk): 230-235. |
[3] | 张玥, 王树涛, 徐春峰, 宁尚斌, 孙华超, 蒋贤国. 提高空调换热器换热效果的研究和应用[J]. 家电科技, 2024, 0(zk): 240-244. |
[4] | 徐春峰, 张玥, 王月帅, 蒋贤国. 高能效一体式左右结构屋顶机空调匹配研究[J]. 家电科技, 2024, 0(zk): 245-248. |
[5] | 胡正璐, 郑伟栋, 张志光, 王晓天. 空调器室内机风道结构优化设计与性能分析[J]. 家电科技, 2024, 0(zk): 302-305. |
[6] | 司理涛, 胡世尧, 栾强利, 盖晓男. 商用空调制冷剂流动音的机理分析与改善[J]. 家电科技, 2024, 0(zk): 586-589. |
[7] | 戴子晴, 杨文钧, 杜超, 赵凯强, 邓璠, 单体运. R-454B与R-410A在北美定频管道机中的应用对比研究[J]. 家电科技, 2024, 0(5): 64-67. |
[8] | 李宗攀, 黄海涛. 房间空调器凝露吹水现象的实验研究[J]. 家电科技, 2024, 0(5): 110-113. |
[9] | 孙西辉, 刘旭, 李宁. 提升多联机空调能效的室外机换热器设计[J]. 家电科技, 2024, 0(5): 114-117. |
[10] | 覃兴文, 赵蓬, 赵静, 余豹. 基于变频压缩机绕组测温技术的R32空调系统爆炸实验研究[J]. 家电科技, 2024, 0(4): 104-108. |
[11] | 黄之敏. 转子压缩机摩擦副的磨损预测及试验验证[J]. 家电科技, 2024, 0(2): 58-62. |
[12] | 张士兵, 刘睿, 潘京大, 张旭, 马凌. R290家用空调器性能研究[J]. 家电科技, 2024, 0(1): 22-27. |
[13] | 吴晓丽. IEC 60335-2-40:2022标准中潜在点火源视作非点火源条件解读[J]. 家电科技, 2024, 0(1): 72-77. |
[14] | 马英超, 杨志鹏, 杨帆, 洪嘉华. 基于R454B制冷剂应用的涡旋压缩机非对称型线设计研究[J]. 家电科技, 2023, 0(zk): 12-15. |
[15] | 张洋洋, 黄刚, 张巍, 李娟, 李秋阳. 新型双吸往复式压缩机及冰箱制冷系统技术研究(Ⅰ)[J]. 家电科技, 2023, 0(zk): 37-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|