家电科技 ›› 2024, Vol. 0 ›› Issue (zk): 120-124.doi: 10.19784/j.cnki.issn1672-0172.2024.99.025

• 第一部分 优秀论文 • 上一篇    下一篇

基于知识塔群的智慧家庭场景自生成技术研究

杜永杰1,2,3, 王杰1,2, 陈天璐1,3, 马晓然1,2,3   

  1. 1.青岛海尔科技有限公司 山东青岛 266100;
    2.数字家庭网络国家工程研究中心 山东青岛 266100;
    3.山东省智慧家庭人工智能与自然交互研究重点实验室 山东青岛 266100
  • 出版日期:2024-12-10 发布日期:2024-12-31
  • 作者简介:杜永杰,博士(在读),高级工程师。研究方向:智慧家庭领域“知识塔群”理论在强化学习、场景生成和自然语言交互。地址:山东省青岛市崂山区海尔路1号海尔科创生态园。E-mail :wangjie.cosmo@haier.com。

Self-generation of smart home scenarios based on knowledge tower clusters

DU Yongjie1,2,3, WANG Jie1,2, CHEN Tianlu1,3, MA Xiaoran1,2,3   

  1. 1. Qingdao Haier Technology Co., Ltd. Qingdao 266100;
    2. National Engineering Research Center Of Digital Home Networking Qingdao 266100;
    3. Shandong Key Laboratory of Artificial Intelligence and Nature Interaction in Smart Homes Qingdao 266100
  • Online:2024-12-10 Published:2024-12-31

摘要: 当前大模型等人工智能技术的出现正在加速智能家居行业的颠覆式发展。然而,现有的智慧家庭系统仍存在知识碎片化、场景自适应能力差、个性化服务能力弱等问题。因此,提出了一种基于知识塔群的智慧家庭场景自生成技术,通过建立家电领域“场景-品类-产品-部件-零件”层次化本体概念体系,构建基于知识塔群的大模型融合增强和协同优化机制,提升大模型在智慧家庭场景应用的可靠性及泛化能力;通过对“人-设备-环境-空间”的多维信息感知,构建基于图神经网络、迁移学习的用户精准需求画像以及场景自编排引擎,提升智慧家庭场景多样化任务自适应和自学习能力,为用户主动提供个性化服务。测试结果表明,该技术下场景生成交互成功率超过95%。

关键词: 知识图谱, 增量学习, 意图识别, 场景生成

Abstract: The rise of large AI models is rapidly reshaping the smart home sector. However, these systems often struggle with scattered knowledge, scene adaptability, and personalized services. To overcome these hurdles, this paper presents a smart home scenario self-generation technique based on a knowledge tower cluster. We design a layered appliance ontology and integrate large models using a synergistic optimization approach rooted in the tower cluster's knowledge graph, bolstering model reliability and generalization in smart homes. By capturing multi-dimensional inputs from users, devices, environments, and spaces, we create precise user profiles and autonomous scene organizers with graph neural networks and transfer learning. This enhances task adaptability and self-learning, enabling proactive, customized user experiences. Testing reveals that our approach achieves a scenario generation accuracy of over 95%.

Key words: Knowledge graph, Incremental learning, Intent recognition, Scene generation

中图分类号: