家电科技 ›› 2024, Vol. 0 ›› Issue (zk): 413-417.doi: 10.19784/j.cnki.issn1672-0172.2024.99.087

• 第四部分 健康适老与智能 • 上一篇    下一篇

一种基于多目标参数优化的智能家电控制算法

郭义合1,2,3, 张旭1,2,3, 李振刚1,2,3   

  1. 1.青岛海尔科技有限公司 山东青岛 266101;
    2.数字家庭网络国家工程研究中心 山东青岛 266101;
    3.青岛市智慧家庭交互与控制工程研究中心 山东青岛 266101
  • 出版日期:2024-12-10 发布日期:2024-12-31
  • 通讯作者: 李振刚,E-mail:li_zhengang@126.com。
  • 作者简介:郭义合,学士学位。研究方向:主要从事智能家电、智能家居相关的研究。地址:山东省青岛市崂山区海尔路1号科创生态园C01中央研究院。E-mail:guoyh@haier.com。

An intelligent home appliance control algorithm based on multi-objective parameter optimization

GUO Yihe1,2,3, ZHANG Xu1,2,3, LI Zhengang1,2,3   

  1. 1. Qingdao Haier Technology Co. Ltd. Qingdao 266101;
    2. National Engineering Research Center of Digital Home Networking. Qingdao 266101;
    3. Qingdao Engineering Research Center of Smart Home Interaction and Control. Qingdao 266101
  • Online:2024-12-10 Published:2024-12-31

摘要: 随着智能家居走进千家万户,家电智能控制算法越来越成为学术研究的热点。家电智能控制算法的一个重要的研究方向是随环境等动态要素(实时)变化的控制参数优化问题。针对这个问题,结合相关领域的研究进展,基于(实时)人类反馈强化学习和多目标参数优化算法,提出了一种实时自适应算法。在空调实验数据上,验证了算法的可行性和有效性,也同时为智能空调控制指出了一个优化方向。本算法的贡献在于:1)拟合预测算法,首先基于聚类算法的群组分析,生成包括房型,空调参数等环境要素的拟合模型,然后基于当前空调状态预测空调状态变化;2)反馈强化学习算法,利用空调状态变化和用户事后干预为反馈,结合实时状态(环境),实时优化决策模型;3)多目标参数优化算法,针对用户体验,空调节能等多目标,寻找控制参数最优解的算法。

关键词: 实时, 智能家居, 家电控制, 空调, 决策算法, 参数优化, 人类反馈强化学习, 多目标优化

Abstract: With the entry of smart homes into thousands of households, intelligent control algorithms for home appliances are increasingly becoming a hot topic in academic research. An important research direction of intelligent control algorithms is the optimization of control parameters that vary in real-time with dynamic factors such as the environment. In response to this issue, this article combines research progress in related fields and proposes a real-time adaptive algorithm based on (real-time) human feedback reinforcement learning and multi-objective parameter optimization algorithms. The feasibility and effectiveness of the algorithm were verified on the experimental data of air conditioning, and it also points out an optimization direction for intelligent air conditioning control. The contribution of this algorithm lies in: 1) fitting prediction algorithm, which first generates a fitting model for environmental factors such as room type and air conditioning parameters based on cluster analysis, and then predicts changes in air conditioning status based on the current air conditioning status. 2) Feedback reinforcement learning algorithm, using air conditioning status changes and user intervention as feedback, combined with real-time state (environment), real-time optimization decision model. 3) multi-objective parameter optimization algorithm, which searches for the optimal solution of control parameters for user experience, air conditioning energy conservation, and other multi-objective objectives.

Key words: Real time, Intelligent home, Appliance control, Air condition, Parameter optimization, Human feedback, Reinforcement learning, Multi-objective optimization

中图分类号: