家电科技 ›› 2025, Vol. 0 ›› Issue (zk): 86-89.doi: 10.19784/j.cnki.issn1672-0172.2025.99.018

• 第一部分 优秀论文 • 上一篇    下一篇

面向先验知识与PSO的家电家具布局优化算法研究

陈一帆1, 尹德帅1, 崔振2, 梁旭亮1, 陶海峰3   

  1. 1.海尔优家智能科技(北京)有限公司 北京 100006;
    2.青岛海尔科技有限公司 山东青岛 266101;
    3.数字家庭网络国家工程研究中心 山东青岛 266101
  • 发布日期:2025-12-30
  • 通讯作者: 陶海峰,taohaifeng@haier.com。
  • 作者简介:陈一帆,硕士学位。研究方向:运筹学、深度学习、机器学习等。地址:北京市西城区设计之都大厦。

A study on layout optimization algorithm for home appliances and furniture based on prior knowledge and PSO

CHEN Yifan1, YIN Deshuai1, CUI Zhen2, LIANG Xuliang1, TAO Haifeng3   

  1. 1. Haier Youjia Intelligent Technology (Beijing) Co., Ltd. Beijing 100006;
    2. Qingdao Haier Technology Co., Ltd. Qingdao 266101;
    3. National Engineering Research Center of Digital Home Networking. Qingdao 266101
  • Published:2025-12-30

摘要: 随着建筑行业的数字化转型和智能家居场景的快速发展,对家电家具的自动化布局方法提出了更高要求。为满足智能空间中家具与家电高效、合理摆放的需求,提出一种结合先验知识与粒子群算法(PSO)的室内布局优化方法。首先,基于空间语义规则对主要家电与家具对象进行先验分组,通过规则系统实现初始合理放置。随后构建考虑家具间关系与户型边界条件的多目标代价函数,利用PSO对整个空间中的对象进行迭代建模与布局优化。该方法引入了户型结构信息和商品组合知识,提升了初始布局的准确性与收敛效率,同时通过优化算法兼顾了单个家具对象的位置最优性与整体空间的协调性。实验结果表明,该方法生成的布局方案表现良好,可与人工设计方案媲美。研究表明,该方法属于人工智能算法在家电、家具布局优化中的典型应用,具有良好的智能家居落地前景。

关键词: 室内设计, 自动布局, 先验知识, PSO优化

Abstract: As the construction industry undergoes digital transformation and smart home environments continue to evolve, the demand for automated layout solutions for home appliances and furniture has grown significantly. Introduces an interior layout optimization method that integrates prior knowledge with Particle Swarm Optimization (PSO) to enable efficient and intelligent spatial arrangement. Initially, major furniture and appliance objects are grouped based on spatial semantic rules, allowing a rule-driven system to generate a reasonable initial placement. A multi-objective cost function is then formulated, incorporating both object-to-object relationships and spatial constraints derived from floor plan structures. PSO is applied to iteratively optimize the layout across the entire space. By leveraging structural layout information and predefined item groupings, the method enhances both the accuracy of the initial arrangement and the convergence speed of the optimization process. The approach balances individual object placement with overall spatial harmony. Experimental results show that the generated layouts are both practical and esthetically comparable to manually designed configurations. This work exemplifies the application of artificial intelligence algorithms in the optimization of furniture and appliance layouts, and holds strong potential for deployment in smart home design systems.

Key words: Interior design, Automatic layout, Prior knowledge, Particle swarm optimization

中图分类号: