[1] 徐鸿, 石文鹏. 智能家电舒适、健康发展之路[J]. 家电科技, 2020(01): 24-26. [2] Baudier P, Ammi C, Deboeuf-Rouchon M.Smart home: Highly-educated students' acceptance[J]. Technological Forecasting and Social Change, 2020, 153: 119355. [3] 王少华, 樊其锋, 张健, 等. 基于随机森林和支持向量机混合模型的空调故障检测[J]. 家电科技, 2022(zk): 774-777. [4] Sadat Mirnaghi M, Haghighat F.Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review[J]. Energy and Buildings, 2020, 229: 110492. [5] Chen Z, O’Neill Z, Wen J, et al. A review of data-driven fault detection and diagnostics for building HVAC systems[J]. Applied Energy, 2023, 339: 121030. [6] Li T, Zhao Y, Zhang C, et al.A knowledge-guided and data-driven method for building HVAC systems fault diagnosis[J]. Building and Environment, 2021, 198: 107850. [7] Han H, Gu B, Kang J, et al.Study on a hybrid SVM model for chiller FDD applications[J]. Applied Thermal Engineering, 2011, 31(04): 582-592. [8] Gajjar S, Palazoglu A.A data-driven multidimensional visualization technique for process fault detection and diagnosis[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 154: 122-136. [9] Cheng F, Cai W, Zhang X, et al.Fault detection and diagnosis for Air Handling Unit based on multiscale convolutional neural networks[J]. Energy and Buildings, 2021, 236: 110795. [10] Chen J, Zhang L, Li Y, et al.A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112395. [11] Guo Y, Tan Z, Chen H, et al.Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving[J]. Applied Energy, 2018, 225: 732-745. [12] Fan C, Liu X, Xue P, et al.Statistical characterization of semi-supervised neural networks for fault detection and diagnosis of air handling units[J]. Energy and Buildings, 2021, 234: 110733. [13] Zhao H, Wang Y, Duan J, et al.Multivariate time-series anomaly detection via graph attention network[C]//2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020: 841-850. [14] Zhong F, Kaiser Calautit J, Wu Y.Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations[J]. Energy, 2023, 282: 128180. [15] Du Z, Chen K, Chen S, et al.Deep learning GAN-based data generation and fault diagnosis in the data center HVAC system[J]. Energy and Buildings, 2023, 289: 113072. [16] Veličković P, Cucurull G, Casanova A, et al.Graph attention networks[J]. arXiv preprint arXiv, 2017, 1710: 10903. [17] 唐善玄, 刘猛, 王少华, 等. 自适应多任务的主动智能控制边缘计算集成框架[J]. 家电科技, 2023(06): 22-26. |