[1] 中华人民共和国商务部(2024). 解读:欧盟F-GAS修订公布[OL]. 国际贸易新闻. http://chinawto.mofcom.gov.cn/article/jsbl/zszc/202401/20240103470289.shtml [2] 刘雨声, 李万勇, 施骏业, 等. R1234yf热泵技术综述与潜力分析[J]. 制冷学报, 2020, 41(01): 10-19. [3] 牛永明, 刘军, 周永, 等. R1234yf及R1234ze(E)研究进展概述[J]. 制冷与空调, 2015, 15(11): 82-91. [4] Gilberto M, Sreekant N, Charles K.Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces[J]. Journal of Heat Transfer, 2013, 135(11). [5] 柴玉鹏, 马国远, 许树学, 等. R1234yf和R134a制冷及制热性能实验研究[J]. 制冷与空调(四川), 2017, 31(04): 435-440. [6] 许树学, 柴玉鹏, 马国远, 等. R1234yf低温制热性能的实验研究[J]. 家电科技, 2016(zk): 178-181. [7] Carlos R M, Adrián B M, Joaquín E N, et al.Comparative analysis of HFO-1234ze(E) and R-515B as low GWP alternatives to HFC-134a in moderately high temperature heat pumps[J]. International Journal of Refrigeration, 2020, 023. [8] Adrián M, Carlos M, Joaquín N, et al.Experimental comparison of HFO-1234ze(E) and R-515B to replace HFC-134a in heat pump water heaters and moderately high temperature heat pumps[J]. Applied Thermal Engineering, 2021, 196. [9] Song J, Kim J, Eom S, et al.Study on the refrigerant interchangeability under extreme operating conditions of R1234yf heat pump systems for electric vehicles[J]. Applied Thermal Engineering, 2024, 122789. [10] 丁京华, 王芳, 阿斯娜, 等. R1234ze/R32混合工质替代R410A热泵热水机组性能研究[J]. 流体机械, 2018, 46(10): 80-84+54. [11] 李潼, 张华, 邱金友. R1234ze(E)/R32混合工质热泵系统性能的实验研究[J]. 制冷技术, 2018, 38(01): 32-36. [12] 王路路, 张华, 邱金友. R1234ze(E)与R32混合工质在热泵系统中替代R410A的实验研究[J]. 制冷学报, 2017, 38(03): 30-35. [13] 王方, 袁秋艳, 王帅琪, 等. R1234ze/HCs非共沸混合工质热泵系统循环性能分析[J]. 制冷学报, 2020, 41(01): 26-31. [14] 梁静静, 王方, 李志强, 等. R1234yf/HCs混合工质热泵系统循环性能分析[J]. 低温与超导, 2020, 48(08): 56-61. [15] 张宁, 李敏霞, 马一太, 等. 跨临界CO2与R1234yf低环温高温热泵热水系统性能分析[J]. 制冷学报, 2023, 44(04): 85-92+119. |