[1] 王昊晴, 刘宁, 马钊, 等. 面向安全可靠用电需求的“光储直柔”直流建筑标准体系研究[J]. 供用电, 2022, 39(08): 15-20. [2] 刘晓华, 张涛, 刘效辰, 等. “光储直柔”建筑新型能源系统发展现状与研究展望[J]. 暖通空调, 2022, 52(08): 1-9. [3] 李雨桐, 郝斌, 童亦斌, 等. 《民用建筑直流配电设计标准》解读[J]. 建筑电气, 2022, 41(07): 25-32. [4] 江亿. 光储直柔——助力实现零碳电力的新型建筑配电系统[J]. 暖通空调, 2021, 51(10): 1-12. [5] 唐文强, 范凌云, 廖俊豪, 等. 直流电器标准研究[J]. 家电科技, 2022(06): 16-22. [6] Jensen S, Marszal-Pomianowska A, Lollini R, et al.IEA EBC Annex 67 Energy Flexible Buildings[J]. Energy and Buildings, 2017, 155: 25-34. [7] Yoshino H, Hong T, Nord N.IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods[J]. Energy and Buildings, 2017, 152: 124-136. [8] Yan D, Hong T, Dong B, et al.IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings[J]. Energy and Buildings, 2017, 156: 258-270. [9] Sun Y, Shen Q, Liu X, et al.Optimal control strategy for building HVAC systems: Satisfying flexible demand response with different value-based selection[J]. Energy and Buildings, 2024, 323: 114823. [10] Ruan Y, Ma J, Meng H, et al.Potential quantification and impact factors analysis of energy flexibility in residential buildings with preheating control strategies[J]. Journal of Building Engineering, 2023, 78: 107657. [11] Afroz Z, Wu H, Sethuvenkatraman S, et al.A study on price responsive energy flexibility of an office building under cooling dominated climatic conditions[J]. Energy and Buildings, 2024, 316: 114359. [12] Dey B, Sharma G, Bokoro P N.Economic management of microgrid using flexible non-linear load models based on price-based demand response strategies[J]. Results in Engineering, 2024, 24: 102993. [13] 王慧龙, 赵宇明, 柳洲, 等. 建筑空调系统基于用能柔性参与电力市场研究综述[J]. 暖通空调, 2024: 1-12. [14] Norouziasas A, Attia S, Hamdy M.Impact of space utilization and work time flexibility on energy performance of office buildings[J]. Journal of Building Engineering, 2024, 98: 111032. [15] 李佳讯, 张寿明. 计及柔性负荷和用户满意度的微电网最优经济运行[J]. 控制工程, 2024: 1-13. [16] Nambiar C, Schiavon S, Brager G, et al.Assessing thermal comfort and participation in residential demand flexibility programs[J]. Energy and Buildings, 2025, 328: 115153. [17] 赵婉竹, 陈振乾. 考虑柔性负荷的储能系统容量配置优化[J]. 科学技术与工程, 2024, 24(30): 12977-12984. [18] 张公飞. 计及柔性负荷的建筑综合能源系统调度优化研究[D]. 济南: 山东建筑大学, 2024. [19] 郑君. 上海国家电网办公楼柔性负荷的楼宇需求响应研究[D]. 济南: 山东建筑大学, 2023. [20] Li S, Chen X, Bu L, et al.Two-stage optimization for the air conditioning system in public buildings with flexible control of indoor load[J]. Energy and Buildings, 2024, 312: 114162. [21] Kharvari F, Azimi S, O Brien W. A comprehensive simulation-based assessment of office building performance adaptability to teleworking scenarios in different Canadian climate zones[J]. Building Simulation, 2022, 15(06): 995-1014. [22] Alimohammadisagvand B, Jokisalo J, Kilpeläinen S, et al.Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control[J]. Applied Energy, 2016, 174: 275-287. [23] 肖暾. 一种适应“光储直柔”应用的直流供电组合式空调设备研发[J]. 暖通空调, 2023, 53(zk2): 108-110. [24] 俞国新, 常云雪, 邵立伟, 等. 考虑光储直柔系统直流母线电压波动的空调电机控制技术[J]. 电气工程学报, 2024: 1-10. [25] 王劭中, 俞国新, 常云雪, 等. 光储直柔背景下直流空调电机控制策略研究[J]. 电机与控制应用, 2024, 51(04): 60-69. [26] Ye A, Zhao Z, Liu S, et al.Flexible energy utilization potential of demand response oriented photovoltaic direct-driven air-conditioning system with energy storage[J]. Energy and Buildings, 2024, 323: 114818. [27] 康靖, 陈泉, 李雨桐. 基于建筑直流配电母线电压的多联机空调柔性运行机制研究与实践[J]. 暖通空调, 2023, 53(zk2): 39-43. [28] 李思慧. 光伏直驱空调实现实时能量匹配的优化研究[D]. 长沙: 湖南大学, 2022. [29] GB/T 33658—2017室内人体热舒适环境要求与评价方法[S]B/T 33658—2017室内人体热舒适环境要求与评价方法[S]. 北京: 中国标准出版社, 2017. [30] 曹仁贤, 张兴. 太阳能光伏并网发电及其逆变控制[M]. 北京: 机械工业出版社, 2011. [31] 李禹翔, 胡亚欣, 焦利敏, 等. 基于光储直柔技术(PEDF)的家庭能源管理系统设计与实现[J]. 家电科技, 2024(zk1): 36-40. [32] Chinnathambi N D, Nagappan K, Samuel C R, et al.Internet of things-based smart residential building energy management system for a grid-connected solar photovoltaic-powered DC residential building[J]. International Journal of Energy Research, 2022, 46(02): 1497-1517. [33] Cimen H, Bazmohammadi N, Lashab A, et al.An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring[J]. Applied Energy, 2022, 307: 118136. [34] Ferahtia S, Rezk H, Abdelkareem M A, et al.Optimal techno-economic energy management strategy for building's microgrids based bald eagle search optimization algorithm[J]. Applied Energy, 2022, 306: 118069. [35] Ahmad A, Khan J Y.Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated Smart Buildings[J]. Applied Energy, 2020, 259: 114208. [36] J. S, R. D, S. D R.DC-Bus Signaling: A Distributed Control Strategy for a Hybrid Renewable Nanogrid[J]. IEEE Transactions on Industrial Electronics, 2006, 53(05): 1453-1460. [37] A. G, N. R T, R. O.Implementation of Energy Management Scenarios in a DC Microgrid Using DC Bus Signaling[J]. IEEE Transactions on Industry Applications, 2021, 57(05): 5306-5317. [38] Schonberger J, Round S, Duke R.Autonomous Load Shedding in a Nanogrid using DC Bus Signalling[C]//Conference of the IEEE Industrial Electronics Society. IEEE, 2006. [39] K. S, L. Z, Y. X, et al.A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 3032-3045. [40] 钟安琪. 建筑直流电气系统功率主动响应技术研究[D]. 北京: 北京交通大学, 2022. [41] ISO 7730: 2005 Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria[S], 2005. [42] ANSI/ASHRAEStandard 55-2010: Thermal Environment Conditions for Human Occupancy[S]. Atlanta, GA, 2011. [43] GB 50736—2012 民用建筑供暖通风与空气调节设计规范[S], 2012. |