家电科技 ›› 2024, Vol. 0 ›› Issue (zk): 474-478.doi: 10.19784/j.cnki.issn1672-0172.2024.99.100

• 第四部分 健康适老与智能 • 上一篇    下一篇

空调室内人体热舒适控制研究综述与展望

黄康康, 高旭, 陈开东, 梁之琦, 叶海森, 刘继胜   

  1. TCL空调器(中山)有限公司 广东中山 528427
  • 出版日期:2024-12-10 发布日期:2024-12-31
  • 作者简介:黄康康,男,硕士学位,TCL空调(中山)有限公司制冷工程师。研究方向:主要从事制冷技术开发、室内热舒适。E-mail:kangkang2.huang@tcl.com。

Review and prospect of research on indoor human thermal comfort control with air conditioning

HUANG Kangkang, GAO Xu, CHEN Kaidong, LIANG Zhiqi, YE Haisen, LIU Jisheng   

  1. TCL air conditioner (Zhongshan) Co., Ltd. Zhongshan 528427
  • Online:2024-12-10 Published:2024-12-31

摘要: 随着空调使用需求的不断升级,人们对于房间空调器等设备的舒适性和节能性能的关注度也在日益增加。研究综合了室内热舒适评价的六个关键指标:平均热感觉指数、热感觉投票、有效温度、标准有效温度、空气分布特性指标以及热舒适投票模型。这些指标被划分为两大类:热舒适主观评价模型和热舒适客观评价模型。客观评价模型可以通过特定的公式进行计算,而主观评价模型则依赖于人们的投票结果,但这两类模型目前都无法直接应用于空调系统的控制。为了解决这一问题,总结了两种解决思路。第一种思路是对热舒适客观评价模型进行简化,使空调系统能够根据简化后的模型进行有效的控制。第二种思路是利用热舒适主客观评价模型,建立机器学习模型。这一模型将通过传感器收集的数据和热成像技术获取的图像数据进行驱动,从而实现空调系统的精确控制。相信未来通过这两种方法,可以显著提高空调系统的舒适性和节能性能,满足人们对高品质生活的追求。

关键词: 热舒适, 空调控制, 模型简化, 数据驱动

Abstract: With the continuous upgrading of air conditioning usage demand, people's attention to the comfort and energy-saving performance of room air conditioners and other equipment is also increasing. Six key indicators for indoor thermal comfort evaluation are integrated: average thermal sensation index, thermal sensation voting, effective temperature, standard effective temperature, air distribution characteristic indicators, and thermal comfort voting model. These indicators are divided into two categories: subjective evaluation models for thermal comfort and objective evaluation models for thermal comfort. The objective evaluation model can be calculated through specific formulas, while the subjective evaluation model relies on people's voting results. However, neither of these models can currently be directly applied to the control of air conditioning systems. To address this issue, two approaches are summarized to solving it. The first approach is to simplify the objective evaluation model for thermal comfort, so that the air conditioning system can be effectively controlled based on the simplified model. The second approach is to use a subjective and objective evaluation model for thermal comfort to establish a machine learning model. This model will be driven by the data collected by sensors and the image data obtained by thermal imaging technology to achieve accurate control of the air conditioning system. Through these two methods, the comfort and energy-saving performance of the air conditioning system can be significantly improved, meeting people's pursuit of high-quality life.

Key words: Thermal comfort, Air conditioning control, Model simplification, Data driven

中图分类号: