家电科技 ›› 2025, Vol. 0 ›› Issue (zk): 338-341.doi: 10.19784/j.cnki.issn1672-0172.2025.99.071

• 第三部分 健康适老与智能 • 上一篇    下一篇

基于数据驱动混合模型的热泵MPC控制策略研究

袁文昭1, 李浩2, 杨强2, 梁勇超1, 熊军1, 代文杰1, 高旭1   

  1. 1.广东TCL智能暖通设备有限公司 广东中山 528400;
    2.中国建筑科学研究院有限公司建筑环境与能源研究院 北京 100013
  • 发布日期:2025-12-30
  • 作者简介:袁文昭,本科学历。研究方向:空调器制冷系统及功能逻辑。地址:广东省中山市南头镇广东TCL智能暖通设备有限公司。E-mail:wenzhao.yuan@tcl.com。

Research on MPC control strategy of heat pump based on data-driven hybrid model

YUAN Wenzhao1, Li Hao2, Yang Qiang2, LIANG Yongchao1, XIONG Jun1, DAI Wenjie1, Gao Xun1   

  1. 1. GD TCL Intelligent Heating & Ventilating Equipment Co., Ltd. Zhongshan 528400;
    2. Institute of Building Environment and Energy, China Academy of Building Research Beijing 100013
  • Published:2025-12-30

摘要: 针对热泵供暖系统中用户操作习惯差异大、节能意识不足的问题,提出一种基于数据驱动混合模型的热泵模型预测控制(MPC)策略。通过分析210户北方地区用户的运行数据,将用户行为分为不调节、较少调节和频繁调节三类,发现60%用户存在操作惰性或盲区。在此基础上,构建了结合4R3C建筑热阻容模型与BP神经网络制热量预测的混合模型,利用遗传算法进行参数辨识,并通过MPC实现水温的自动优化调节。实验结果表明,该策略在保证室内舒适度的前提下,可实现6.5%~15.7%的节能效果,验证了其在实际应用中的有效性与可行性。

关键词: 热泵, 模型预测控制, 数据驱动, 混合模型, 节能运行, 用户行为分析

Abstract: Aiming at the problems of significant differences in user operation habits and insufficient energy-saving awareness in heat pump heating systems, it proposes a Model Predictive Control (MPC) strategy for heat pumps based on a data-driven hybrid model. By analyzing the operational data of 210 users in northern China, user behaviors were categorized into three types: non-adjusting, less-adjusting, and frequent-adjusting, revealing that 60% of users exhibit operational inertia or a lack of knowledge. On this basis, a hybrid model combining a 4R3C building thermal resistance-capacitance model with a BP neural network for heat output prediction was constructed. Parameters were identified using a genetic algorithm, and automatic optimal adjustment of water temperature was achieved through MPC. Experimental results show that this strategy can achieve energy savings of 6.5% to 15.7% while maintaining indoor comfort, verifying its effectiveness and feasibility in practical applications.

Key words: Heat pump, Model predictive control(MPC), Data-driven, Hybrid model, Energy-saving operation, User behavior analysis

中图分类号: